摘要An ultrahigh resolution photoassociation spectrum of caesium atoms in a magneto-optical trap is presented. Hyperfine structure of the excited state molecule is obtained by using the lock-in method based on modulated cold atoms in this spectrum. Amplitude of resonant lines related to the rotational levels increases with photoassociation laser intensity, and saturation effect of photoassociation of cold atoms is observed in our experiment. The saturation intensity of photoassociation is deduced by fitting the experimental data to a saturation model based on scattering theory. Differences among saturation intensities of different rotational progressions in the υ=55 vibrational state of the caesium molecular long-range 0g- state have been found.
Abstract:An ultrahigh resolution photoassociation spectrum of caesium atoms in a magneto-optical trap is presented. Hyperfine structure of the excited state molecule is obtained by using the lock-in method based on modulated cold atoms in this spectrum. Amplitude of resonant lines related to the rotational levels increases with photoassociation laser intensity, and saturation effect of photoassociation of cold atoms is observed in our experiment. The saturation intensity of photoassociation is deduced by fitting the experimental data to a saturation model based on scattering theory. Differences among saturation intensities of different rotational progressions in the υ=55 vibrational state of the caesium molecular long-range 0g- state have been found.
(Intensities and shapes of molecular spectral lines and bands)
引用本文:
MA Jie;WANG Li-Rong;JI Wei-Bang;XIAO Lian-Tuan;JIA Suo-Tang. Saturation of Photoassociation in Cs Magneto-optical Trap[J]. 中国物理快报, 2007, 24(7): 1904-1907.
MA Jie, WANG Li-Rong, JI Wei-Bang, XIAO Lian-Tuan, JIA Suo-Tang. Saturation of Photoassociation in Cs Magneto-optical Trap. Chin. Phys. Lett., 2007, 24(7): 1904-1907.
[1] Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev.Mod. Phys. 78 483 [2] Lett P D, Helmerson K, Phillips W D, Ratliff L P, Rolston S L andWagshul M E 1993 Phys. Rev. Lett. 71 2200 [3] Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F andPillet P 1998 Phys. Rev. Lett. 80 4402 [4] Wu Ying and Yang X X 2002 Chin. Phys. Lett. 19 1410 [5] Schl\"oder U, Silber C, Deuschle T and Zimmermann C 2002 Phys. Rev. A 66 061403 [6] Kraft S D, Mudrich M, Staudt M U, Lange J, Dulieu O, Wester R andWeidemuller M 2005 Phys. Rev. A 71 013417 [7] McKenzie C, Denschlag J H, H\"affner H, Browaeys A, Araujo E E,Fatemi F K, Jones K M, Simsarian J E, Choa D, Simonib A, Tiesinga E,Julienne P S, Helmerson K, Lett P D, Rolston S L and Phillips W D 2002 Phys. Rev. Lett. 88 120403 [8] Prodan I D, Pichler M, Junker M, Hulet R G and Bohn J L 2003 Phys. Rev. Lett. 91 080402 [9] Monroe C, Swann W, Robinson H and Wieman C 1990 Phys. Rev.Lett. 65 1571 [10] Wang Y H, Yang H J, Zhang T C and Wang J M 2006 Acta Phys.Sin. 55 3403 (in Chinese) [11] Tiesinga E, Jones K M, Lett P D, Volz U, Williams C J and JulienneP S 2005 Phys. Rev. A 71 052703 [12] Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws Fand Pillet P 1999 Eur. Phys. J. D 5 389 [13] Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414