Initial-value Problems for Extended KdV--Burgers Equations via Generalized Conditional Symmetries
ZHANG Shun-Li 1,2, LI Ji-Na1
1Center for Nonlinear Studies, Department of Mathematics, Northwest University, Xi'an 7100692Center of Nonlinear Science, Ningbo University, Ningbo 315211
Initial-value Problems for Extended KdV--Burgers Equations via Generalized Conditional Symmetries
ZHANG Shun-Li 1,2;LI Ji-Na1
1Center for Nonlinear Studies, Department of Mathematics, Northwest University, Xi'an 7100692Center of Nonlinear Science, Ningbo University, Ningbo 315211
摘要We classify initial-value problems for extended KdV--Burgers equations via generalized conditional symmetries. These equations can be reduced to Cauchy problems for some systems of first-order ordinary differential equations. The obtained reductions cannot bederived within the framework of the standard Lie approach.
Abstract:We classify initial-value problems for extended KdV--Burgers equations via generalized conditional symmetries. These equations can be reduced to Cauchy problems for some systems of first-order ordinary differential equations. The obtained reductions cannot bederived within the framework of the standard Lie approach.
[1] Ovsiannikov L V 1982 Group Analysis of DifferentialEquations (New York: Academic) Olver P J 1993 Application of Lie Groups to DifferentialEquations (New York: Springer) Bluman G W and Kumei S 1989 Symmetries and DifferentialEquations (New York: Springer) Ibragimov Kh N 1985 Transformation Groups Applied toMathematical Physics (Dordrecht: Reidel) [2] Fushchych W I and Zhdanov R Z 1994 Proc. Acad. Sci.Ukraine 5 40 [3] Fokas A and Liu Q 1994 Theor. Math. Phys. 99 263 [4] Galaktionov V A 1990 Diff. Int. Eqns. 3 863 [5] Qu C Z, Zhang S L and Liu R C 2000 Physica D 144 97 Estevez P G, Qu C Z and Zhang S L 2002 J. Math. Anal.Appl. 275 44 Zhang S L, Lou S Y and Qu C Z 2002 Chin. Phys. Lett. 12 1741 Zhang S L, Lou S Y and Qu C Z 2003 J. Phys. A: Math.Gen. 36 12223 Zhang S L and Lou S Y 2004 Physica A 335 430 Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15 2765 [6] Olver P J 1994 Proc. R. Soc. London A 444 509 [7] Qu C Z 1997 Stud. Appl. Math. 99 107 Qu C Z 1999 IMA J. Appl. Math. 62 283 Qu C Z 2000 Nonlin. Anal. Theory. Meth. Appl. 42 301 [8] Zhdanov R Z 1995 J. Phys. A: Math. Gen. 28 3841 [9] Zhdanov R Z 2000 Proc. Institute of Mathematics (Kyiv:Institute of Mathematics) vol 30 part 1 p 255 [10] Zhdanov R Z and Tsyfra I M 1996 Ukr. Math. J. 48 595 [11] Zhdanov R Z, Tsyfra I M and Popovych R O 1999 J. Math.Anal. Appl. 238 101 [12] Bluman G and Cole J D 1969 J. Math. Mech. 18 1025 [13] Olver P J and Rosenau P 1986 Phys. Lett. A 114107 [14] Fushchych W I and Tsyfra I M 1987 J. Phys. A: Math. Gen. 20 L45 [15] Fushchych W I and Zhdanov R Z 1989 Phys. Rep. 172 123 [16] Clarkson P and Kruskal M D 1989 J. Math. Phys. 30 2201 [17] Levi D and Winternitz P 1989 J. Phys. A: Math.Gen. 22 2915 [18] Zhdanov R Z and Andreitsev A Yu 2000 J. Phys. A:Math. Gen. 33 5763 [19] Basarab-Horwath P and Zhdanov R Z 2001 J. Math. Phys. 42 376