Information-Disturbance Tradeoff in Estimating the Unknown Three-Qubit GHZ State
ZHANG Sheng-Li1,2, ZOU Xu-Bo1, LI Ke1, JIN Chen-Hui2, GUO Guang-Can1
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 2300262Electronic Technology Institute, Information Engineering University, Zhengzhou 450004
Information-Disturbance Tradeoff in Estimating the Unknown Three-Qubit GHZ State
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 2300262Electronic Technology Institute, Information Engineering University, Zhengzhou 450004
摘要In a recent paper, Sacchi (Phys. Rev. Lett. 96(2006)220502) studied the information-disturbance tradeoff in estimating an unknown two-qubit maximally entangled state. In this study, we explore the tradeoff in estimating an unknown three-qubit GHZ state. The optimal estimation process supplies a fidelity of 13/54 and the tradeoff interpolates smoothly between non-informative measurement and optimal estimation process.
Abstract:In a recent paper, Sacchi (Phys. Rev. Lett. 96(2006)220502) studied the information-disturbance tradeoff in estimating an unknown two-qubit maximally entangled state. In this study, we explore the tradeoff in estimating an unknown three-qubit GHZ state. The optimal estimation process supplies a fidelity of 13/54 and the tradeoff interpolates smoothly between non-informative measurement and optimal estimation process.
[1] Fuchs C A and Peres A 1996 Phys. Rev. A 53 2038 [2] Banaszek K 2001 Phys. Rev. Lett. 86 1366 [3] Fuchs C A et al 2001 Phys. Rev. A 63 062305 [4] Banaszek K and Devetak I 2001 Phys. Rev. A 64052307 [5] Mista L and Fiur\'asek J 2006 Phys. Rev. A 74 022316 [6] Mista L et al 2005 Phys. Rev. A 72 012311 [7] Genoni M G et al 2006 Phys. Rev. A 74 012301 [8] Mista L 2006 Phys. Rev. A 73 032335 [9] Sacchi M F 2006 Phys. Rev. Lett. 96 220502 [10] Sacchi M F 2006 quant-ph/0610246 [11] Buscemi F and Sacchi M F 2006 Phys. Rev. A 74052320 [12] Sciarrino F et al 2006 Phys. Rev. Lett. 96020408 [13] Andersen U L et al 2006 Phys. Rev. Lett. 96020409 [14] Barnum H 2002 quant-ph/0205155 [15] D'Ariano G M 2003 Fortschr. Phys. 51 318 [16] Ozawa M 2004 Ann. Phys. (N.Y.) 311 350 [17] Maccone L 2006 Phys. Rev. A 73 042307 [18] Jin X R et al 2006 Phys. Lett. A 354 67 [19] Gao T et al 2005 J. Phys. A: Math. Gen. 385761 [20] Genoni M G and Paris M G A 2005 Phys. Rev. A 71052307 [21] Jamio\l kowski A 1972 Rep. Math. Phys. 3 275 [22] Zhelobenko D P 1973 Compact Lie Groups and TheirRepresentations (Providence, RI: American Mathematical Society) [23] Ac\'\in A, Tarrach R and Vidal G 2000 Phys. Rev. A 61 062307 [24] Dobrza\'nski R et al 2006 Phys. Rev. A 73032313