摘要We study exactly the solvable noncommutative scalar quantum field models of (2n) or (2n+1) dimensions. By writing out an equivalent action of the noncommutative field, it is shown that the special condition B.θ=±I in field theoretic context means the full restoration of the maximal U (∞) gauge symmetries broken due to kinetic term. It is further shown that the model can be obtained by dimensional reduction of a 2n-dimensional exactly solvable noncommutative Ф4 quantum field model closely related to the 1+1-dimensional Moyal/matrix-valued nonlinear Schrodinger (MNLS) equation. The corresponding quantum fundamental commutation relation of the MNLS model is also given explicitly.
Abstract:We study exactly the solvable noncommutative scalar quantum field models of (2n) or (2n+1) dimensions. By writing out an equivalent action of the noncommutative field, it is shown that the special condition B.θ=±I in field theoretic context means the full restoration of the maximal U (∞) gauge symmetries broken due to kinetic term. It is further shown that the model can be obtained by dimensional reduction of a 2n-dimensional exactly solvable noncommutative Ф4 quantum field model closely related to the 1+1-dimensional Moyal/matrix-valued nonlinear Schrodinger (MNLS) equation. The corresponding quantum fundamental commutation relation of the MNLS model is also given explicitly.
[1] Gopakumar R et al 2000 J. High Energy Phys. 0005 020 [2] Gopakumar R et al 2003 Commun. Math. Phys. 233 355 [3] Aganagic M et al 2001 J. High Energy Phys. 0104 001 [4] Nekrasov N A et al 1998 Commun. Math. Phys. 198 689 [5] Gross D J and Nekrasov N A 2000 J. High Energy Phys. 0007 034 [6] Polychronakos A P 2000 Phys. Lett. B 495 407 [7] Jatkar D J et al 2000 J. High Energy Phys. 0009 018 [8] Dasgupta K et al 2000 J. High Energy Phys. 0006 022 [9] Harvey J A et al 2000 J. High Energy Phys. 0007 042 [10] Mandal G and Rey S J 2000 Phys. Lett. B 495 193 [11] Witten E Noncommutative Tachyons and String Field Theory [arXiv: hep-th/0006071] [12] Mandal G et al 2002 Eur. Phys. J. C 24 495 [13] Langmann E et al 2004 J. High Energy Phys. 0401 017 [14] Langmann E et al 2003 Phys. Lett. B 569 95 [15] Langmann E and Szabo R J 2002 Phys. Lett. B 533 168 [16] Ambj\'\o rn J et al 1999 J. High Energy Phys. 9911 029 [17] Kim S et al 2002 Phys. Rev. D 65 045009 [18] Seiberg N and Witten E 1999 J. High Energy Phys. 9909 032 [19] Seiberg N 2000 J. High Energy Phys. 0009 003 [20] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267 [21] Bellucci S et al 2001 Phys. Lett. B 522 345 [22] Langmann E 2003 Nucl. Phys. B 654 404 [23] Wang N and Wadati M 2003 J. Phys. Soc. Jpn. 72 3055 [24] Sklyanin E K 1979 Sov. Phys. Dokl. 24 107 Sklyanin E K 1982 J. Sov. Math. 19 1546 [25] Kulish P P and Sklynin E K 1982 J. Sov. Math. 19 1596 [26] Faddeev L D 1981 Sov. Sci. Rev. Math. Phys. C 1 107 [27] Thacker H B 1983 Rev. Mod. Phys. 53 253 [28] Polychronakos A P 2005 Nucl. Phys. B 711 505 [29] Korepin V E et al 1993 Quantum Inverse Scattering Method andCorrelation Functions (London: Cambridge University Press)[1] Gopakumar R et al 2000 J. High Energy Phys. 0005 020 [2] Gopakumar R et al 2003 Commun. Math. Phys. 233 355 [3] Aganagic M et al 2001 J. High Energy Phys. 0104 001 [4] Nekrasov N A et al 1998 Commun. Math. Phys. 198 689 [5] Gross D J and Nekrasov N A 2000 J. High Energy Phys. 0007 034 [6] Polychronakos A P 2000 Phys. Lett. B 495 407 [7] Jatkar D J et al 2000 J. High Energy Phys. 0009 018 [8] Dasgupta K et al 2000 J. High Energy Phys. 0006 022 [9] Harvey J A et al 2000 J. High Energy Phys. 0007 042 [10] Mandal G and Rey S J 2000 Phys. Lett. B 495 193 [11] Witten E Noncommutative Tachyons and String Field Theory [arXiv: hep-th/0006071] [12] Mandal G et al 2002 Eur. Phys. J. C 24 495 [13] Langmann E et al 2004 J. High Energy Phys. 0401 017 [14] Langmann E et al 2003 Phys. Lett. B 569 95 [15] Langmann E and Szabo R J 2002 Phys. Lett. B 533 168 [16] Ambj\'\o rn J et al 1999 J. High Energy Phys. 9911 029 [17] Kim S et al 2002 Phys. Rev. D 65 045009 [18] Seiberg N and Witten E 1999 J. High Energy Phys. 9909 032 [19] Seiberg N 2000 J. High Energy Phys. 0009 003 [20] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267 [21] Bellucci S et al 2001 Phys. Lett. B 522 345 [22] Langmann E 2003 Nucl. Phys. B 654 404 [23] Wang N and Wadati M 2003 J. Phys. Soc. Jpn. 72 3055 [24] Sklyanin E K 1979 Sov. Phys. Dokl. 24 107 Sklyanin E K 1982 J. Sov. Math. 19 1546 [25] Kulish P P and Sklynin E K 1982 J. Sov. Math. 19 1596 [26] Faddeev L D 1981 Sov. Sci. Rev. Math. Phys. C 1 107 [27] Thacker H B 1983 Rev. Mod. Phys. 53 253 [28] Polychronakos A P 2005 Nucl. Phys. B 711 505 [29] Korepin V E et al 1993 Quantum Inverse Scattering Method andCorrelation Functions (London: Cambridge University Press)