摘要We study the microwave response of surface intrinsic Josephson junctions on Bi2Sr2CaCu2O8+δ, in which bending pancake vortex lines are introduced in a controllable way. It is found that the bending vortices can greatly influence the response. In some cases, typical Shapiro steps that lie far above the quasiparticle branch are observed, with the step interval satisfying the Josephson relation and their amplitude versus the square root of microwave power following the Bessel function behaviour. In the other cases, current steps that lie on the quasiparticle branch are observed, but only one or two steps appear at the same time under the variation of the microwave power.
Abstract:We study the microwave response of surface intrinsic Josephson junctions on Bi2Sr2CaCu2O8+δ, in which bending pancake vortex lines are introduced in a controllable way. It is found that the bending vortices can greatly influence the response. In some cases, typical Shapiro steps that lie far above the quasiparticle branch are observed, with the step interval satisfying the Josephson relation and their amplitude versus the square root of microwave power following the Bessel function behaviour. In the other cases, current steps that lie on the quasiparticle branch are observed, but only one or two steps appear at the same time under the variation of the microwave power.
[1] Shapiro S, Janus A R and Holly S 1964 Rev. Mod. Phys. 36 223 [2] Barone A and Paterno G 1982 Physics and Applications of theJosephson Effect (New York: Wiley) [3] Kleiner R, Steinmeyer F, Kunkel G and M\"{ullerP 1992 Phys. Rev. Lett. 68 2394 [4]For a review, see Yurgens A 2000 Supercond. Sci. Technol. 13 R85 [5] Kautz R L 1980 Appl. Phys. Lett. 36 386 [6] Kautz R L 1981 J. Appl. Phys. 52 3528 [7] Wang H B, Wu P H and Yamashita T 2001 Phys. Rev. Lett. 87 107002 [8] Wang H B, Aruga Y, Chen J, Nakajima K, Yamashita T and Wu PH 2000 Appl. Phys. Lett. 77 1017 [ [9] Wang H B, You L X, Chen J, Nakajima K, Yamashita Tand Wu P H 2001 Physica C 362 108 [10]Doh Y J, Kim J, Kim K T and Lee H J 2000 Phys. Rev. B 61 3834 [11] Irie A, Kurosu Y and Oya G 2003 IEEE Trans. Appl.Supercond. 13 908 [12] Irie A and Oya G 1995 IEEE Trans. Appl. Supercond. 5 3267 [13] Wei Y F,Zhao S P, Zhu X B, Chen G H, Ren Y F, Yu HW, Yang Q S and Hu y 2005 Chin. Phys. Lett. 22 2051 [14] Zhu X B, Zhao S P, Chen G H, Tao H J, Lin C T,Xie S S and Yang Q S 2004 Physica C 403 52 [15] Zhao S P, Zhu X B, Wei Y F, Chen G H, Yang Q S andLin C T 2005 Phys. Rev. B 72 184511 [16] Wei Y F, Zhao S P, Zhu X B, Chen G H and Yang Q S 2006 Phys.Rev. B 74 224508 [17] Rother S, Koval Y, M\"{uller P, Kleiner R, KasaiY, Nakajima K and Darula M 2001 IEEE Trans. Appl. Supercond. 11 1191 [18] Oya G I, Terada A, Takahashi N, Irie A and Hashimoto T2005 Jpn. J. Appl. Phys. 44 L491 [19] Oya G I, Hashimoto T and Irie A 2006 Supercond. Sci.Technol. 19 S191 [20] Wang H B, Kim S M, Urayama S, Nagao M, Arisawa S,Yamashita T and Wu P H 2006 Appl. Phys. Lett. 88 063503 [21] Ustinov A V and Malomed B A 2001 Phys. Rev. B 64020302 [22] Yamada Y, Nakajima Kensuke, Yasuda T, Yamashita T andNakajima Koji 2005 IEEE Trans. Appl. Supercond. 15 1028 [23] Gaifullin M B, Latyshev Y I, Yamashita Tand Matsuda Y J 2003 Physica C 392--396 319 [24] Yamada Y, Nakajima Kensuke and Nakajima Koji 2006 J. Phys.: Conference Series 43 1366