摘要By developing the multiple scales method, we analytically study the dynamics properties of gap soliton of Bose--Einstein condensate in optical lattices. It is shown that the gap soliton will appear at Brillouin zone edge of linear band spectrum of the condensates when the interatomic interaction strength is larger than the lattice depth. Moreover, the density of gap soliton starts to be relatively small, while it increases with time and becomes stable.
Abstract:By developing the multiple scales method, we analytically study the dynamics properties of gap soliton of Bose--Einstein condensate in optical lattices. It is shown that the gap soliton will appear at Brillouin zone edge of linear band spectrum of the condensates when the interatomic interaction strength is larger than the lattice depth. Moreover, the density of gap soliton starts to be relatively small, while it increases with time and becomes stable.
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
引用本文:
WANG Deng-Long;YAN Xiao-Hong;WANG Feng-Jiao. Dynamical Stability of Gap Soliton of One-Dimensional Condensate in Optical Lattices with Strong Interatomic Interaction[J]. 中国物理快报, 2007, 24(7): 1817-1820.
WANG Deng-Long, YAN Xiao-Hong, WANG Feng-Jiao. Dynamical Stability of Gap Soliton of One-Dimensional Condensate in Optical Lattices with Strong Interatomic Interaction. Chin. Phys. Lett., 2007, 24(7): 1817-1820.
[1] Anderson B P and Kasevich M A 1998 Science 282 1686 [2] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78179 [3] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402 [4] Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 862353 [5] Alfimov G L, Kevrekidis P G, Konotop V V and Salerno M 2002 Phys. Rev. E 66 046608 [6] Pu H, Baksmaty L O, Zhang W, Bigelow N P and Meystre P 2003 Phys. Rev. A 67 043605 [7] Efremidis N K and Christodoulides D N 2003 Phys. Rev. A 67 063608 [8] Louis P J Y, Ostrovskaya E A, Savage C M and Kivshar Y S 2003 Phys. Rev. A 67 013602 [9] Orzel C, Tuchman A, Fenselau M L, Yasuda M and Kasevich M A2001 Science 291 2386 [10] Denschlag J H, Simsarian J E, Haffner H, McKenzie C, BrowaeysA, Cho D, Helmerson K, Rolston S and Phillips W 2002 J. Phys. B 35 3095 [11] Liang Z X, Zhang Z D and Liu W M 2006 Mod. Phys. Lett. A 21 383 [12] Huang G X, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617 [13] Wang D L, Yan X H and Tang Y 2003 Chin. Phys. Lett. 20 554 Wang D L, Yan X H and Tang Y 2004 J. Phys. Soc. Jpn. 73 123 [14] Wu B and Niu Q 2003 New J. Phys. 5 104 [15] Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein P,Marzlin K P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401