摘要Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.
Abstract:Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.
YI Ming;JIA Ya;LIU Quan;ZHU Chun-Lian;YANG Li-Jian. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model[J]. 中国物理快报, 2007, 24(7): 1829-1832.
YI Ming, JIA Ya, LIU Quan, ZHU Chun-Lian, YANG Li-Jian. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model. Chin. Phys. Lett., 2007, 24(7): 1829-1832.
[1]Nurse P 2000 Cell 100 71 [2]Tyson J J 1991 Proc. Natl. Acad. Sci. USA 88 7328 [3]Goldbeter A 1991 Proc. Natl. Acad. Sci. USA 88 9107 [4]Novak B and Tyson J J 1993 J. Cell. Sci. 106 1153 [5]Novak B and Tyson J J 1997 Proc. Natl. Acad. Sci. USA 94 9147 [6]Alt W and Tyson J J 1987 Math. Biosci. 84 159 [7]Tyson J J 1989 Math. Biosci. 96 165 [8]Sveiczer A and Novak B 1996 ACH-Models Chem. 133 299 [9]Sveiczer A et al 2000 Proc. Natl. Acad. Sci. USA 97 7865 [10]Sveiczer A et al %, Tyson J J and Novak B2001 Biophys. Chem. 92 1 [11]Harada Y et al%, Funatsu T, Murakami K, Nonoyama Y, Ishihama A and Yanagida T1999 Biophys. J. 76 709 [12]Hasty J et al %, Pradines J and Dolnik M2000 Proc. Natl. Acad. Sci. USA 97 2075 [13]Kepler T B and Elston T C 2001 Biophys. J. 81 3116 [14]Gonze D et al %, Halloy J and Goldbeter A2002 Proc. Natl. Acad. Sci. USA 99 673 [15]Swain P S et al %, Elowitz M B and Siggia E D2002 Proc. Natl. Acad. Sci. USA 99 12795 [16]McAdams H H et al %fand Arkin A1997 Proc. Natl. Acad. Sci. USA 94 814 [17]Barkai N and Leibler S 1999 Nature 403 267 [18]Rao C V, Wolf D M and Arkin A 2002 Nature 420 231 [19]Novak B, Pataki Z and Ciliberto A 2001 Chaos 11 277 [20]Gillespie D T 1977 J. Phys. Chem. 81 2340 [21]Gillespie D T 2000 J. Chem. Phys. 113 297 [22]Zhang J Q et al %, Hou Z H and Xin H W2004 ChemPhysChem. 5 1041 [23]Hou Z H and Xin H W 2004 Chem. Phys. Chem. 3 407 [24]Li H Y et al %, Hou Z H and Xin H W2005 Phys. Rev. E 71 061916 [25]Wang Z W et al %, Hou Z H and Xin H W2005 Chem. Phys. Lett. 401 307 [26]Yi M and Jia Y 2006 Phys. Rev. E 73 041923 [27]Sveiczer A et al 1996 J. Cell. Sci. 109 2947