Mechanical Properties of Single-Walled (5,5) Carbon Nanotubes with Vacancy Defects
YUAN Shi-Jun1, KONG Yong2, LI Fa-Shen1
1Key Lab on Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 2Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Mechanical Properties of Single-Walled (5,5) Carbon Nanotubes with Vacancy Defects
YUAN Shi-Jun1;KONG Yong2; LI Fa-Shen1
1Key Lab on Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 2Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, 70569 Stuttgart, Germany
摘要First-principles simulation is used to investigate the structural and mechanical properties of vacancy defective single-walled (5,5) carbon nanotubes. The relations of the defect concentration, distribution and characteristic of defects to Young's modulus of nanotubes are quantitatively studied. It is found that each dangling-bond structure (per supercell) decreases Young's modulus of nanotube by 6.1% for symmetrical distribution cases. However the concentrative vacancy structure with saturated atoms has less influence on carbon nanotubes. It is suggested that the mechanical properties of carbon nanotubes depend strongly upon the structure and relative position of vacancies in a certain defect concentration.
Abstract:First-principles simulation is used to investigate the structural and mechanical properties of vacancy defective single-walled (5,5) carbon nanotubes. The relations of the defect concentration, distribution and characteristic of defects to Young's modulus of nanotubes are quantitatively studied. It is found that each dangling-bond structure (per supercell) decreases Young's modulus of nanotube by 6.1% for symmetrical distribution cases. However the concentrative vacancy structure with saturated atoms has less influence on carbon nanotubes. It is suggested that the mechanical properties of carbon nanotubes depend strongly upon the structure and relative position of vacancies in a certain defect concentration.
[1] Dekker C 1999 Phys. Today 52 (No 5) 22 [2] Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H,and Ajayan P 2002 Phys. Rev. Lett. 89 075505 [3] Mawhinney D B, Naumenko V, Kuznetsova A, Yates J T, Liu Jand Smalley R E 2000 Chem. Phys. Lett. 324 213 [4] Talapatra S, Ganesan P G, Kim T, Vajtai R, Huang M, Shima M,Ramanath G, Srivastava D, Deevi S C and Ajayan P M 2005 Phys. Rev.Lett. 95 097201 [5] Kis A, Cs\'{anyi G, Salvetat J P, Lee T N, Couteau E, KulikA J, Benoit W, Brugger J, and Forr\'{o L 2004 Nature Mater. 3 153 [6] Crespi V H, Cohen M L, and Rubio A 1997 Phys. Rev. Lett. 79 2093 [7] Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 NewJ. Phys. 6 68 [8] Fan Y, Goldsmith B R and Collins P G 2005 NatureMater. 4 906 [9] Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund Kand Kaski K 2004 Phys. Rev. B 70 245416 [10] Zhang S, Mielke S L, Khare R, Troya D, Ruoff R S, Schatz G Cand Belytschko T 2005 Phys. Rev. B 71 115403 [11] Lu A J and Pan B C 2004 Phys. Rev. Lett. 92 105504 [12] Ajayan P M, Ravikumar V and Charlier J C 1998 Phys.Rev. Lett. 81 1437 [13] Zhou T, Yang L, Wu J, Duan W and Gu B 2005 Phys.Rev. B 72 193407 [14] Lee S, Kim G, Kim H, Choi B, Lee J, Jeong B W, Ihm J, Kuk Yand Kahng S 2005 Phys. Rev. Lett. 95 166402 [15] Guo X, Liao J B and Zhao J J 2007 Nanotechnology 18 105705 [16] Liao J B, Guo X, Zhao J J 2006 J. Chin. Electron.Microsc. Soc. 25 345 (in Chinese) [17] Ordej\'on P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441 Soler J M, Artacho E, Gale J D, Garc\'\i a A, Junquera J,Ordej{\'on P and S{\'anchez-Portal D 2002 J. Phys.: Condens.Matter 14 2745 Soler J M, Beltran M R, Michaelian K, Garzon I L, Ordej\'on P,S\'anchez-Portal D and Artacho E 2000 Phys. Rev. B 61 5771 [18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev.Lett. 77 3865 [19] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [20]Yu M F, Files B S, Arepalli S and Ruoff R S 2000 Phys.Rev. Lett. 84 5552