Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser
N. A. Poklonski1, N. M. Lapchuk1, A. V. Khomich2, LU Fan-Xiu3, TANG Wei-Zhong3, V. G. Ralchenko4, I. I. Vlasov4, M. V. Chukichev5, Sambuu Munkhtsetseg1,6
1Department of Physics, Belarusian State University, Minsk 220030, Belarus2V. A. Kotelnikov Institute of Radio Engineering and Electronics, Russia Academy of Sciences, Fryazino 141191, Russia3School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 1000834A. M. Prokhorov General Physics Institute, Russia Academy of Sciences, Moscow 119991, Russia5Department of Physics, M. V. Lomonosov Moscow State University, Moscow 119899, Russia6National University of Mongolia, Ulaanbaatar 210646, Mongolia
Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser
N. A. Poklonski1;N. M. Lapchuk1;A. V. Khomich2;LU Fan-Xiu3;TANG Wei-Zhong3;V. G. Ralchenko4;I. I. Vlasov4;M. V. Chukichev5;Sambuu Munkhtsetseg1,6
1Department of Physics, Belarusian State University, Minsk 220030, Belarus2V. A. Kotelnikov Institute of Radio Engineering and Electronics, Russia Academy of Sciences, Fryazino 141191, Russia3School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 1000834A. M. Prokhorov General Physics Institute, Russia Academy of Sciences, Moscow 119991, Russia5Department of Physics, M. V. Lomonosov Moscow State University, Moscow 119899, Russia6National University of Mongolia, Ulaanbaatar 210646, Mongolia
Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8×1018cm-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom ccupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.
Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8×1018cm-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom ccupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.
N. A. Poklonski;N. M. Lapchuk;A. V. Khomich;LU Fan-Xiu;TANG Wei-Zhong;V. G. Ralchenko;I. I. Vlasov;M. V. Chukichev;Sambuu Munkhtsetseg;. Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser[J]. 中国物理快报, 2007, 24(7): 2088-2090.
N. A. Poklonski, N. M. Lapchuk, A. V. Khomich, LU Fan-Xiu, TANG Wei-Zhong, V. G. Ralchenko, I. I. Vlasov, M. V. Chukichev, Sambuu Munkhtsetseg,. Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser. Chin. Phys. Lett., 2007, 24(7): 2088-2090.
[1] Dischler B and Wild C 1998 Low-Pressure Synthetic Diamond:Manufacturing and Applications (Berlin: Springer) p 331 [2] Jin S and Moustakas T D 1994 Appl. Phys. Lett. 65 403 [3] Yang J X, Zhang H D, Li C M, Chen G C, Lu F X, Tang W Z and Tong YM 2004 Diamond Relat. Mater. 13139 [4] Smith W V, Sorokin P P, Gelles I L and Lasher G J 1959 Phys.Rev. 115 1546 [5] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys.Rev. Lett. 85 290 [6] Childress L, Taylor J M, Sorensen A S and Lukin M D 2005 Phys.Rev. A 72 052330 [7] Greentree A D, Devitt S J and Hollenberg L C L 2006 J. Phys.:Condens. Matt. 18 S825 [8] Cherpak N T 1996 Distributed-Type Quantum Amplifiers$($Masers$)$ in the Microwave Waveband (Kiev: Naukova Dumka) (in Russian) [9] Loubser J H N and van Wyk J A 1978 Rep. Prog. Phys. 41 1201 [10] Lapchuk N M, Poklonski N A, Vyrko S A, Ralchenko V G, Zavedeev EV, Khmelnitskii R A and Khomich A V 2003 Hydrogen MaterialsScience and Chemistry of Metal Hydrides ed Veziroglu N et al(Dordrecht: Kluwer Academic) p 792 [11] Poklonski N A, Lapchuk N M and Lapchuk T M JETP Lett. 2004 80 748 [12] Poklonski N A 2006 Techn. Phys. Lett. 32 309 [13] Twitchen D J, Baker J M, Newton M E and Johnston K 2000 Phys.Rev. B 61 9 [14] Yelisseyev A, Lawson S, Sildos I, Osvet A, Nadolinny V, FeigelsonB, Baker J M, Newton M and Yuryeva O 2003 Diamond Relat. Mater. 12 2147 [15] Lu F X, Zhong G F, Sun L G, Fu Y L and Tang W Z 1998 DiamondRelat. Mater. 7 737 [16] Ralchenko V, Sychov I, Vlasov I, Konov V, Khomich A and Voronina S1999 Diamond Relat. Mater. 8 189 [17] Robins L H, Cook L P, Farabaugh E N and Feldman A 1989 Phys.Rev. B 39 13367 [18] Ruan J, Choyke W J and Partlow W D 1991 J. Appl. Phys. 69 6632 [19] Collins A T and Lawson S C 1989 J. Phys. D: Condens. Matter. 1 6929 [20] Kanda H, Watanabe K, Eun K Y and Lee J K 2003 Diamond Relat.Mater. 12 1760 [21] Couderc P and Catherine Y 1987 Thin Solid Films 14 93 [22] Nistor S V, Stefan M, Ralchenko V, Khomich A and Schoemaker D 2000 J. Appl. Phys. 87 8741 [23] Talbot-Ponsonby D F, Newton M E, Baker J M, Scarsbrook G A,Sussmann R S, Whitehead A J and Pfenninger S 1998 Phys. Rev. B 57 2264 [24] Isoya J, Kanda H, Sakaguchi I, Morita Y and Ohshima T 1997 Radiat. Phys. Chem. 50 321 [25] Poklonski N A, Kislyakov E F, Bubel' O N and Vyrko S A 2006 Proceed. Conf. Carbon Nanostructures (Minsk 20--23 June 2006) p 260 [26] Zel'dovich Y B 1974 Sov. Phys. JETP Lett. 19 74 [27] Tucker E B 1961 Phys. Rev. Lett. 6 547