摘要We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake--sleep transitions.
Abstract:We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake--sleep transitions.
[1] Kobayashi M and Musha T 1982 IEEE. Trans. Biomed.Eng. 29 456 [2] Peng C K et al 1993 Phys. Rev. Lett. 70 1343 [3] Ivanov P C et al 1998 Europhys. Lett. 43 363 [4] Ivanov P C et al 2001 Chaos 11 641 [5] Ivanov P C et al 1999 Nature 399 461 [6] Amaral L A N et al 2001 Phys. Rev. Lett. 86 6026 [7] Kyinono K et al 2004 Phys. Rev. Lett. 93 178103 [8] Kyinono K et al 2004 Phys. Rev. Lett. 95 058101 [9] Verrier R L, Muller J E and Hobson J A 1996 Cardiovasc.Res. 31 181 [10] Struzik Z R et al 2004 Phys. Rev. E 70 050901 [11] Rechtschaffen A and Kales A 1968 A Manual ofStandardized Terminology, Techniques, and Scoring Systemfor Sleep Stages of Human Subjects (Washington, DC: US Public HealthService, US Government Printing Office) [12] Carskadon M A and Dement W C 1994 Principles and Practice of Sleep Medicine (Philadelphia: Saunders) [13] Ivanov P C et al 1999 Europhys. Lett. 48 594 [14] Bunde A et al 2000 Phys. Rev. Lett. 23 3736 [15] Penzel T et al 2003 IEEE. Trans. Biomed. Eng. 50 1143 [16] Kantelhardt J W et al 2002 Phys. Rev. E 65 051908 [17] Dvir I et al 2002 Am. J. Physiol. Heart Circ.Physiol. 283 H434 [18] Muzy J F, Bacry E and Arneodo A 1991 Phys. Rev.Lett. 67 3515 [19] Mallat S G and Hwang W L 1992 IEEE. Trans.on Information Theory 38 617 [20] Peng C K et al 1994 Phys. Rev. E 49 1685 [21] Ossadnik S M et al 1994 Biophys. J. 67 64 [22] Hu K et al 2001 Phys. Rev. E 64 011114 [23] Kantelhardt J W et al 2002 Physica A 316 87 [24] Oswiecimka P, Kwapien J and Drozdz S 2006 Phys. Rev. E 74 016103 [25] Cai S M et al 2006 Chin. Phys. Lett. 23 754 [26] Cai S M et al 2007 Physica A 375 687 [27] Cai S M et al 2007 Phys. Lett. Adoi:10.1016/j.physleta. 2007.01.086 [28] Goldberger A L et al 1999 Circulation 101 e215 [29] Vanoli E et al 1995 Circulation 91 1918 [30] Cai S M et al 2007 Preprint physics/0703129