摘要We introduce a novel model for robustness of complex with a tunable attack information parameter. The random failure and intentional attack known are the two extreme cases of our model. Based on the model, we study the robustness of complex networks under random information and preferential information, respectively. Using the generating function method, we derive the exact value of the critical removal fraction of nodes for the disintegration of networks and the size of the giant component. We show that hiding just a small fraction of nodes randomly can prevent a scale-free network from collapsing and detecting just a small fraction of nodes preferentially can destroy a scale-free network.
Abstract:We introduce a novel model for robustness of complex with a tunable attack information parameter. The random failure and intentional attack known are the two extreme cases of our model. Based on the model, we study the robustness of complex networks under random information and preferential information, respectively. Using the generating function method, we derive the exact value of the critical removal fraction of nodes for the disintegration of networks and the size of the giant component. We show that hiding just a small fraction of nodes randomly can prevent a scale-free network from collapsing and detecting just a small fraction of nodes preferentially can destroy a scale-free network.
WU Jun;TAN Yue-Jin;DENG Hong-Zhong;LI Yong. A Robustness Model of Complex Networks with Tunable Attack Information Parameter[J]. 中国物理快报, 2007, 24(7): 2138-2141.
WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong. A Robustness Model of Complex Networks with Tunable Attack Information Parameter. Chin. Phys. Lett., 2007, 24(7): 2138-2141.
[1] Albert R, Jeong H and Barab\'asi A L 2000 Nature 406 378 [2] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468 [3] Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Phys. Rev.Lett. 85 4626 [4] Cohen R, Erez K and Ben-Avraham D 2001 Phys. Rev. Lett.86 3682 [5] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E65 056109 [6] Bollob\'as B and Riordan O 2003 Internet Math. 1 1 [7] V\'azquez A and Moreno Y 2003 Phys. Rev. E 67 015101 [8] Lin G J, Cheng X and Ou-Yang Q 2003 Chin. Phys. Lett.20 22 [9] Gallos L K, Cohen R, Argyrakis P, Bunde A and Havlin S 2005 Phys. Rev. Lett. 94 188701 [10] Paul G, Sreenivasan S and Stanley H E 2005 Phys. Rev.E. 72 056130 [11] Lai Y C 2005 Pramana J. Physics 64 483 [12] Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. {\bf23 263 [13] Newman M E J, Strogatz S H and Watts D J 2001 Phys.Rev. E 64 26118 [14] Newman M E J 2002 Phys. Rev. Lett. 89 208701 [15] Barab\'asi A-L and Albert R 1999 Science 286 509 [16] Molloy M and Reed B 1995 Random Structures andAlgorithms 6 161