Darboux Transformation and Multi-Solitons for Complex mKdV Equation
ZHA Qi-Lao1,2, LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
Darboux Transformation and Multi-Solitons for Complex mKdV Equation
ZHA Qi-Lao1,2;LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
摘要An explicit N-fold Darboux transformation with multi-parameters for coupled mKdV equation is constructed with the help of a gauge transformation of the Ablowitz--Kaup--Newell--Segur (AKNS) system spectral problem. By using the Darboux transformation and the reduction technique, some multi-soliton solutions for the complex mKdV equation are obtained.
Abstract:An explicit N-fold Darboux transformation with multi-parameters for coupled mKdV equation is constructed with the help of a gauge transformation of the Ablowitz--Kaup--Newell--Segur (AKNS) system spectral problem. By using the Darboux transformation and the reduction technique, some multi-soliton solutions for the complex mKdV equation are obtained.
[1] Ablowitz M J and Clarkson P A 1991 Solitons, NonlinearEvolution Equations and Inverse Scattering (Cambridge: CambridgeUniversity Press) chap 2 p 70 [2] Gu C H, Guo B L, Li Y S, Cao C W, Tian C, Tu G Z, Hu H S, GuoB Y and Ge M L 1990 Soliton Theory and Its Application (Hangzhou:Zhejiang Publishing House of Science and Technology) chap 3 p 141 [3] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformationin Soliton Theory and Its Geometric Applications (Shanghai: Science andTechnology) chap 1 p1 [4] Hirota R 2004 The Direct Method in Soliton Theory(Cambridge: Cambridge University Press) chap 1 p 19 [5] Chen D Y 2006 The Introduction of Soliton (Beijing:Science Press) chap 5 p 101 [6] Neugebauer G, Meinel R 1984 Phys. Lett. A 100 467 [7] Levi D, Neugebauer G, Meinel R 1984 Phys. Lett. A 102 1 [8] Li Y S, Ma W X and Zhang J E 2000 Phys. Lett. A 275 60 [9] Li Y S and Zhang J E 2001 Phys. Lett. A 284 258 [10] Li Y S, Zhang J E 2003 Chaos, Solitons and Fractals 16 271 [11] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 681508 [12] Zhou Z J and Li Z B 2003 Commun. Theor. Phys. 39 257 [13] Zhou Z J and Li Z B 2003 Acta Phys. Sin. 52262 (in Chinese) [14] Chen A H and Li X M 2006 Chaos, Solitons and Fractals 27 43 [15] Li X M and Chen A H 2005 Phys. Lett. A 342 413 [16] Fan E G 2000 J. Phys. A: Math. Gen. 33 6925 [17] Fan E G 2001 Commun. Theor. Phys. 36 401 [18] Lou S Y 2000 Phys. Lett. A 277 94 [19] Marchant T R 2007 Chaos, Solitons and Fractals 321328