Quantum Overloading Cryptography Using Single-Photon Nonlocality
TAN Yong-Gang1,2, CAI Qing-Yu1, SHI Ting-Yun1
1State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 4300712Graduate School of the Chinese Academy of Sciences, Beijing 100049
Quantum Overloading Cryptography Using Single-Photon Nonlocality
TAN Yong-Gang1,2;CAI Qing-Yu1;SHI Ting-Yun1
1State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 4300712Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要Using the single-photon nonlocality, we propose a quantum novel overloading cryptography scheme, in which a single photon carries two bits information in one-way quantum channel. Two commutative modes of the single photon, the polarization mode and the spatial mode, are used to encode secret information. Strict time windows are set to detect the impersonation attack. The spatial mode which denotes the existence of photons is noncommutative with the phase of the photon, so that our scheme is secure against photon-number-splitting attack. Our protocol may be secure against individual attack.
Abstract:Using the single-photon nonlocality, we propose a quantum novel overloading cryptography scheme, in which a single photon carries two bits information in one-way quantum channel. Two commutative modes of the single photon, the polarization mode and the spatial mode, are used to encode secret information. Strict time windows are set to detect the impersonation attack. The spatial mode which denotes the existence of photons is noncommutative with the phase of the photon, so that our scheme is secure against photon-number-splitting attack. Our protocol may be secure against individual attack.
[1] Bell J S 1964 Physics (Long Island City, N.Y.) 1 195 [2] Wang Q, Huang Y F, Sun F W, Zhang Y Sh, Guo G C 2005 Chin. Phys. Lett. 22 335 [3] Tan S M, Walls D F and Collet M J 1991 Phys. Rev. Lett. 66 252 Hardy L 1994 Phys. Rev. Lett. 73 2279 Peres A 1995 Phys. Rev. Lett. 74 4571 Greenberger D M, Horne M A and Zeilinger A 1995 Phys. Rev.Lett. 75 2064 Hardy L 1995 Phys. Rev. Lett 75 2065 van Enk S J 2005 Phys. Rev. A 72 064306 [4] Grangier P, Roger G and Aspect A 1986 Europhys. Lett. 1 173 [5] Goldenberg L and Vaidman L 1995 Phys. Rev. Lett. 75 1239 [6] Koashi M and Imoto N 1997 Phys. Rev. Lett. 79 2383 [7] Bennet C H and Brassard G Proceeding of IEEE internationalConference on Computers, Systems and Signal Processing (Bangalore, India)(IEEE, New York, 1984) p 175 [8] Bennet C H 1992 Phys. Rev. Lett. 68 3121 [9] Bruss D 1998 Phys. Rev. Lett. 81 3018 Bechmann-Pasquinucci H and Gisin N 1999 Phys. Rev. A 59 4238 [10] Ekert A K 1991 Phys. Rev. Lett. 67 661 [11] Bennet C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301 [12] Wang M Y, Yang L G and Yan F L 2005 Chin. Phys. Lett. 22 1053 [13] Kim Y H 2003 Phys. Rev. A 67 040301 [14] Peres A and Terno D R 2004 Rev. Mod. Phys. 76 93 [15] Bostr\"{om K and Felbinger T 2002 Phys. Rev. Lett. 89 187902 Cai Q Y 2003 Phys. Rev. Lett. 91 109801-1 Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601 Deng F G 2006 Phys. Rev. A 74 054302 Deng F G, Long G L and Zhou H Y 2005 Phys. Lett. A 340 43 Man Z X and Xia Y J 2007 Chin. Phys. Lett. 24 15 [16] L\"{ukenhaus N 2000 Phys. Rev. A 61 052304 [17] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 J. Phys. A 35 L407