A Theoretical Study of Photoabsorption Cross Sections of Na2+
ZHANG Wei-Hua1, GAO Xiang2, HAN Xiao-Ying1, LI Jia-Ming1,2
1Key Laboratory of Atomic and Molecular Nanosciences of Ministry of Education, Department of Physics, Tsinghua University, Beijing 1000842Department of Physics, Shanghai Key Laboratory for Laser Fabricationand Material Science, shanghai Jiao Tong University, Shanghai 200030
A Theoretical Study of Photoabsorption Cross Sections of Na2+
1Key Laboratory of Atomic and Molecular Nanosciences of Ministry of Education, Department of Physics, Tsinghua University, Beijing 1000842Department of Physics, Shanghai Key Laboratory for Laser Fabricationand Material Science, shanghai Jiao Tong University, Shanghai 200030
摘要In the framework of quantum defect theory, we calculate photoabsorption cross sections of Na2+. Based on our calculations, there is an absorption window in the photoabsorption cross sections of Na2+, and more than one bump above the absorption window. The calculated photoabsorption cross sections provide an explanation for the abnormal bump in the experimental measurements of Hudson, which is a long-standing experimental puzzle.
Abstract:In the framework of quantum defect theory, we calculate photoabsorption cross sections of Na2+. Based on our calculations, there is an absorption window in the photoabsorption cross sections of Na2+, and more than one bump above the absorption window. The calculated photoabsorption cross sections provide an explanation for the abnormal bump in the experimental measurements of Hudson, which is a long-standing experimental puzzle.
ZHANG Wei-Hua;GAO Xiang;HAN Xiao-Ying;LI Jia-Ming;. A Theoretical Study of Photoabsorption Cross Sections of Na2+[J]. 中国物理快报, 2007, 24(8): 2230-2233.
ZHANG Wei-Hua, GAO Xiang, HAN Xiao-Ying, LI Jia-Ming,. A Theoretical Study of Photoabsorption Cross Sections of Na2+. Chin. Phys. Lett., 2007, 24(8): 2230-2233.
[1] Fano U and Cooper J 1968 Rev. Mod. Phys. 40 441 [2] Liang X L et al. 1985 Acta Phys. Sin. 34 1479(in Chinese) [3] Davenport J W et al 1983 J. Chem. Phys. 78 1095 [4] Manson S T 1971 Phys. Rev. A 3 1260 [5] Hudson R D et al 1967 J. Opt. Soc. Am. 57 651 [6] Han X Y, Gao X, Li J M, Voky L and Feautrier N 2007 Phys.Rev. A 74 062710 [7] Fano U 1970 Phys. Rev. A 2 353 [8] Lee C M (Li Jia-Ming) 1977 Phys. Rev. A 16 109 [9] Jungen C and Atabek O 1977 J. Chem. Phys. 66 5584 [10] Li J M 1986 Electronic and Atomic Collisions edLorents D C, Meyerhof W E and Peterson J R (Amsterdam: Elsevier) [11] Slater J C 1965 J. Chem. Phys. 43 S228 [12] Johnson K H 1973 Advanced Quantum Chemistry 7th ednLowdin P O (New York: Academic) p 143 [13] Dill D and Dehmer J L 1974 J. Chem. Phys. 61 692 [14] Pan X C, Liang X L and Li J M 1987 Acta. Phys. Sin. 36 426 (in Chinese) [15] Zhang P H and Li J M 1996 Phys. Rev. A 54 665 [16] Zhang Y, Zhang P H and Li J M 1997 Phys. Rev. A 56 1819 [17] Niu A F, Zhang Y, Zhang W H and Li J M 1998 Phys. Rev.A 57 1912 [18] Zhang W H, Zhong Z P and Li J M 2000 Sci. Chin. A 43 871 [19] Zhong Z P, Zhang W H, Xu K Z, Feng R F and Li J M1999 Phys. Rev. A 60 236 [20] Zhong Z P, Zhang W H and Li J M 2000 J. Chem. Phys. 113 136 [21] Gao S P, Zhang W H, Li J M and Zhu J 2001 Sci. Chin. A 31 949 [22] Xu R Q, Zhang W H and Li J M 2002 Chin. Phys. Lett. 19 1085 [23] Zhang W H, Xu R Q and Li J M 2003 Chin. Phys. 12 275 [24] Zhang W H and Li J M 2007 Chin. Phys. Lett. 24 687 [25] Platzman R L 1962 Vortex 23 372 Platzman R L 1962 Radiat. Res. 17 419