摘要By using open-ended armchair (6, 6) single-wall carbon nanotubes as electrodes, we investigate the electron transport properties of an all-carbon molecular junction based on the C82 molecule. We find the most stable system among different isomers by performing structural optimization calculations of the C82 isomers and the C82 extended molecules. The calculated results show that the C82--C2(3) isomer and the C82 extended molecule with C82--C2v isomer are most stable. For the all-carbon hybrid system consisting of C82--C2v extended molecules, it is shown that the Landauer conductance can be tuned over several orders of magnitude both by changing the distance between two electrodes and by changing the orientation of the C82 molecule or rotating one of the tubes around the symmetry axis of the system at a fixed distance. Also, we find the most stable distance between two electrodes from the total energy curve. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switch. Moreover, we interpret the conductance mechanism for such a molecular device.
Abstract:By using open-ended armchair (6, 6) single-wall carbon nanotubes as electrodes, we investigate the electron transport properties of an all-carbon molecular junction based on the C82 molecule. We find the most stable system among different isomers by performing structural optimization calculations of the C82 isomers and the C82 extended molecules. The calculated results show that the C82--C2(3) isomer and the C82 extended molecule with C82--C2v isomer are most stable. For the all-carbon hybrid system consisting of C82--C2v extended molecules, it is shown that the Landauer conductance can be tuned over several orders of magnitude both by changing the distance between two electrodes and by changing the orientation of the C82 molecule or rotating one of the tubes around the symmetry axis of the system at a fixed distance. Also, we find the most stable distance between two electrodes from the total energy curve. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switch. Moreover, we interpret the conductance mechanism for such a molecular device.
OUYANG Fang-Ping;XU Hui. Design and First-principles Study of a Fullerene Molecular Device[J]. 中国物理快报, 2007, 24(8): 2369-2372.
OUYANG Fang-Ping, XU Hui. Design and First-principles Study of a Fullerene Molecular Device. Chin. Phys. Lett., 2007, 24(8): 2369-2372.
[1] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277 [2] Joachim C, Gimzewski J K and Aviram A 2000 Nature 408541 Smit R H M et al %, Noat Y, Untiedt C, Lang N D, Hemert M C and Ruitenbeek2002 Nature 419 906 [3] Abraham N and Mark A R 2003 Science 300 1384 Wu S W, Ogawa N and Ho W 2006 Science 312 1362 [4] Chen Y C, Zwolak M and M Ventra D 2004 Nano Lett. 41709 Tao N J 2006 Nanotechnology 1 173 [5] Yan X W et al %, Liu R J, Li Z L, Zou B, Song X N, Wang C K2006 Chem. Phys. Lett. 429 225 Alexander S, Martin A. 2007 Theor. Chem. Accounts: Theor.,Comput., Modeling 117 29 [6] John W L and Charles W B 2006 Phys. Rev. B 74 125401 Hugh D and George K 2006 Phys. Rev. B 73 245431 [7] Zeng D, Wang H, Wang B and Hou J G 2000 Appl. Phys.Lett. 77 3595 [8] Park C et al%, Lim K L, Anderson E H, Alivisatos A P and McEuen P L2000 Nature 407 57 [9] Zhao J et al%, Zeng C, Cheng X, Wang K, Wang G, Yang J, Hou J G and Zhu Q2005 Phys. Rev. Lett. 95 045502 [10] Pasupathy A N et al %, Park J, Chang C, Soldatov A V, Lebedkin S, Bialczak%R C, Grose J E, Sethna J P, Ralph D C and McEuen P L2005 Nano Lett. 5 203 [11] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63121104 Otani M, Ono T and Hirose K 2004 Phys. Rev. B 69 121408 [12] Palacios J et al %, Pere\'z-Jime\'nez A J, Louis E and Verge\'s J A2001 Nanotechnology 12 160 [13] Gutierrez R et al%, Fagas G, Cuniberti G, Grossmann F, Schmidt R and Richter K2002 Phys. Rev. B 65 113410 [14] Schrier J and Whaley K B 2006 J. Phys. Chem. A 1105386 [15] Zhang B L, Xu C H, Wang C Z, Chan CT and Ho K M 1992 Phys.Rev. B 46 R7333 Jones R O and Seifert G 1997 Phys. Rev. Lett. 79 443 [16] Ivanov V K, Kashenock Yu G, Polozkov R G and Solov A V 2001 J.Phys. B 34 669 Gianturco F A, Lucchese R and Sanna N 2002 J. Chem. Phys. 116 2811 [17] Yasutake Y, Shi Z J, Okazaki T, Shinohara H and MajimaY 2005 Nano Lett. 5 1057 [18] Zhou P X, Gu B and Zeng X H 2003 J. World Sic. 2 1 [19] Wang K D et al %, Zhao J, Yang S F, Chen L, Li Q X, Wang B, Yang S H, Yang%J L, Hou J G and Zhu Q S2003 Phys. Rev. Lett. 91 185504 [20] Takahiro Y, Watanabe K and Watanabe S 2005 Phys. Rev. Lett. 95 065501 [21] Dagata J A et al %, Perez-Murano F, Martin C, Kuramochi H and Yokoyama H J2004 Appl. Phys. 96 2386 Martinez J, Yuzvinsky T D, Fennimore A M, Zettl A, Garcia R andBustamante C 2005 Nanotechnology 16 2493 [22] Watanabe H, Manabe C, Shigematsu T and Shimizu M 2001 App.Phys. Lett. 78 2928 [23] Paulson S, Helser A, Buongiorno M, Taylor R M, Falvo M,Superfine R and Washburn S 2000 Science 290 1742 [24]Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung C L,Lieber C M 2000 Science 289 94 Postma T H, Yao Z, Grifoni M and Dekke C 2001 Science 293 76 [25] Yan Q M, Wu J, Duan W H and Gu B L 2005 Phys. Rev. B 72 155425 [26] Yan Q M, Wu J, Duan W H and Gu B L 2006 Appl. Phys.Lett. 88 173107 [27] Ouyang F P and Xu H 2007 Chin. Phys. Lett. 24 1042 [28] Kaoru K and Shigetu N 1998 Chem. Phys. Lett. 282 325 [29] Brandbyge M, Mozos J L, Ordej\'on P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [30] Soler J M, and Artacho E J 2002 Phys. Condens. Matter 14 2745