摘要Considering energy conservation and the backreaction of particles to spacetime, we investigate the massless/massive Dirac particles' Hawking radiation from a Schwarzschild black hole. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the results obtained before. It satisfies the underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas the improved Damour--Ruffini method is more concise and understandable.
Abstract:Considering energy conservation and the backreaction of particles to spacetime, we investigate the massless/massive Dirac particles' Hawking radiation from a Schwarzschild black hole. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the results obtained before. It satisfies the underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas the improved Damour--Ruffini method is more concise and understandable.
(Quantum aspects of black holes, evaporation, thermodynamics)
引用本文:
HE Xiao-Kai;LIU Wen-Biao. Dirac Particles' Hawking Radiation from a Schwarzschild Black Hole[J]. 中国物理快报, 2007, 24(8): 2448-2450.
HE Xiao-Kai, LIU Wen-Biao. Dirac Particles' Hawking Radiation from a Schwarzschild Black Hole. Chin. Phys. Lett., 2007, 24(8): 2448-2450.
[1]Hawking S W 1975 Commun. Math. Phys. 43 199 [2]Hawking S W 1974 Nature 248 30 [3]Damour T and Ruffini R 1976 Phys. Rev. D 14 332 [4]Sannan S 1988 Gen. Rel. Grav. 20 239 [5]Zhao Z and Gui Y X 1983 Chin. Astron. Astrophys. 7 201 [6]Zhu J Y and Zhao Z 1993 Chin. Phys. Lett. 10 510 [7]Zhao Z and Dai X X 1991 Chin. Phys. Lett. 8 548 [8]Giddings S B 1994 Phys. Rev. D 49 4078 [9]Hawking S W 2005 Phys. Rev. D 72 084013 [10]Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042 [11]Parikh M K Preprint hep-th/0402166 [12]Parikh M K 2004 Int. J. Mod. Phys. D 13 2351 [13]Hemming S and Vakkuri E K 2001 Phys. Rev. D 64 044006 [14]Medved A J M 2002 Phys. Rev. D 66 124009 [15]Zhang J Y and Zhao Z 2005 Phys. Lett. B 618 14 [16]Zhang J Y and Zhao Z 2005 Nucl. Phys. B 725 173 [17]Zhang J Y and Zhao Z 2005 J. High Energy Phys. 10 055 [18]Zhang J Y and Zhao Z 2006 Phys. Lett. B 638 110 [19]Jiang Q Q, Yang S Z and Li H L 2006 Commun. Theor. Phys. 45 457 [20]Liu W B 2007 J. Beijing Normal University (NaturalScience) 43 144 (in Chinese) [21]Chandrasekhar S 1983 The Mathematical Theory of BlackHoles (New York: Oxford University Press) [22]Liu W B and Zhao Z 2000 Phys. Rev. D 61 063003 [23]Page D N 1976 Phys. Rev. D 14 1509 [24]Setare M R and Vagenas E C 2004 Phys. Lett. B 584 127 [25]Ren J, Zhang J Y and Zhao Z 2006 Chin. Phys. Lett. 23 2019 [26]Massar S and Parentani R 2000 Nucl. Phys. B 575 333 [27]Zhang J Y and Zhao Z 2005 Mod. Phys. Lett. A 20 1673