Fabrication and Photoluminescence Properties of ZnO Nanorods
ZHONG Hong-Mei1,2, LU Wei1, SUN Yan1, LI Zhi-Feng1
1National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 2000832State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
Fabrication and Photoluminescence Properties of ZnO Nanorods
ZHONG Hong-Mei1,2;LU Wei1;SUN Yan1;LI Zhi-Feng1
1National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 2000832State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
摘要ZnO nanorods are successfully synthesized by annealing the precursors in argon with the chemical precipitation method. The structural and optical properties of ZnO nanorods are investigated. As annealing temperature increases, the intensity of the green emission increases while the intensity of the yellow emission decreases. The result suggests that the green emission depends strongly on the annealing temperature.
Abstract:ZnO nanorods are successfully synthesized by annealing the precursors in argon with the chemical precipitation method. The structural and optical properties of ZnO nanorods are investigated. As annealing temperature increases, the intensity of the green emission increases while the intensity of the yellow emission decreases. The result suggests that the green emission depends strongly on the annealing temperature.
[1] Bagall D M, Chen Y F, Zhu Z, Yao T, Koyama S and Shen M Y 1997 Appl. Phys. Lett. 70 2230 [2] Wong E M and Searson P C 1999 Appl. Phys. Lett. 74 2939 [3] Chopra K L and Das S R 1983 Thin Film Solid Cell (New York:Plenum) [4] Singhal M, Chhabra V, Kang P and Shah D O 1997 Mater. Res.Bull. 32 2397 [5] Zhou H, Alves H, D. Hofmann M, Kriegseis W, Meyer B K, KaczmarczykG and Hoffmann A 2002 Appl. Phys. Lett. 80 210 [6] Xiong G, Wilkinson J, Lyles J, Ucer K B and Williams R T 2003 Radiat. Eff. Defects Solids 158 83 [7] Hong S, Joo T, Park W I, Jun Y H and Yi G C 2003 Appl. Phys.Lett. 83 4157 [8] Hirai T, Harada Y, Hashimoto S, Itoh T and Ohno N 2005 J.Lumin. 112 196 [9] Millers D, Grigorjeva L, Lojkowski W and Strachowski T 2004 Radiat. Measur. 38 589 [10] Gu Y, Kuskovsky I, Yin M, Brien S O and Neumark G F 2004 Appl. Phys. Lett. 85 3833 [11] Shalish I, Temkin H and Narayanamurti V 2004 Phys. Rev. B 69 245401 [12] Dijken A V, Makkinje J and Meijerink A 2001 J. Lumin. 92 323 [13] Zu P, Tang Z K, Wong G K L, Kawasaki M, Ohtomo A, Koinuma H andSegawa Y 1997 Solid State Commun. 103 459 [14] Chen C C, Chao C Y and Lang Z H 2000 Chem. Mater. 121516 [15] Xu C, Xu G, Liu Y K and Wang G H 2002 Solid StateCommun. 122 175 [16] Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A1996 Appl. Phys. Lett. 68 403 [17] Wu X L, Siu G G, Fu C L and Ong H C 2001 Appl. Phys.Lett. 78 2285 [18] Liu M, Kitai H and Mascher P 1992 J. Lumin. 54 35 [19] Pierce B J and Hengehold R L 1976 J. Appl. Phys. 47644 [20] Bagnall D M, Chen Y, Shen M Y, Zhu Z, Goto T and Yao T 1998 J. Cryst. Growth 605 184 [21] Chen Y, Hong K, Ko H J, Nakajima M, Yao T and Segawa Y 2000 Appl. Phys. Lett. 76 245 [22] Ryu Y R, Zhu S, Budai J D, Chandrasekhar H R, Miceli P F and WhiteH W 2000 J. Appl. Phys. 88 201 [23] Krger F A and Vink H J 1954 J. Chem. Phys. 22 250 [24] Xiong G, Pal U and Serrano G 2007 J. Appl. Phys. 101024317 [25] Djuri\v si\'c A B, Choy W C H, Roy V A L, Leung Y H, Kwong CY, Cheah K W, Gundu Rao T K, Chan W K, Lui H F and Surya C 2004 Adv. Funct. Mater. 14 856 [26] G\"opel W and Lampe U 1980 Physica B 22 6447