摘要We investigate the electromagnetic perturbation around a stringy black hole. A second-order differential equation is obtained for the perturbation. The variation of the effective potential with r is presented. The complex frequencies of the quasinormal modes of electromagnetic perturbation around a stringy black hole are computed by the third Wentzel--Kramers--Brillouin (WKB) approximation. The results show that the parameters resulted from the compactification of higher dimensions can influence the quasinormal complex frequencies, and the Maxwell field around a stringy black hole damps more slowly than that around a Schwarzschild black hole.
Abstract:We investigate the electromagnetic perturbation around a stringy black hole. A second-order differential equation is obtained for the perturbation. The variation of the effective potential with r is presented. The complex frequencies of the quasinormal modes of electromagnetic perturbation around a stringy black hole are computed by the third Wentzel--Kramers--Brillouin (WKB) approximation. The results show that the parameters resulted from the compactification of higher dimensions can influence the quasinormal complex frequencies, and the Maxwell field around a stringy black hole damps more slowly than that around a Schwarzschild black hole.
ZHANG Yu;GUI Yuan-Xing;YU Fei;WANG Fu-Jun. Quasinormal Modes of Electromagnetic Perturbation around a Stringy Black Hole[J]. 中国物理快报, 2007, 24(10): 2749-2751.
ZHANG Yu, GUI Yuan-Xing, YU Fei, WANG Fu-Jun. Quasinormal Modes of Electromagnetic Perturbation around a Stringy Black Hole. Chin. Phys. Lett., 2007, 24(10): 2749-2751.
[1] Kokkotas K D and Schmidt B G 1999 Living Rev. Rel. 2 2 [2]Nollert H P 1999 Class. Quantum Grav. 16 R159 [3]Chandrasekhar S 1975 Proc. R. Soc. London A 343 289 [4]Konoplya R A 2005 Phys. Rev. D 71 024038 [5]Cardoso V and Lemos J P S 2001 Phys. Rev. D 64 084017 [6]Beri E, Cardoso V and Yoshida S 2004 Phys. Rev. D 69 124018 [7]Cardoso V, Lemos J P S and Yoshida S 2004 Phys. Rev. D 70 124032 [8]Jing J L and Pan Q Y 2005 Phys. Rev. D 71 124011 [9]Chen S B and Jing J L 2005 Class. Quantum Grav. 22 533 [10]Chen S B and Jing J L 2005 Class. Quantum Grav. 22 2159 [11]Liu H 1995 Class. Quantum Grav. 12 543 [12]Liu H and Mashhoon B 1996 Class. Quantum Grav. 13 233 [13]Wang B, Abdalla E and Mann R B 2002 Phys. Rev. D 65 084006 [14]Wang B, Lin C Y and Molina C 2004 Phys. Rev. D 70064025 [15]Konoplya R A and Zhidenko A 2006 Phys. Rev. D 73124040 [16]L\'{opez-Ortega A 2006 Gen. Rel. Grav. 38 743 [17]Zhang Y and Gui Y X 2006 Class. Quantum Grav. 23 6141 [18]Zhang Y, Gui Y X, Yu F and Li F L 2007 Gen. Rel. Grav. 39 1003 [19]Vishveshwara C V 1970 Nature 227 936 [20]Schutz B F and Will C M 1985 Astrophys. J. 291L33 [21]Iyer S and Will C M 1987 Phys. Rev. D 35 3621 [22]Konoplya R A 2003 Phys. Rev. D 68 024018 [23]Ferrari V and Mashhoon B 1984 Phys. Rev. D 30 295 [24]Leaver E W 1985 Proc. R. Soc. A 402 285 [25]Echeverria F 1989 Phys. Rev. D 40 3194 [26]Finn L S 1992 Phys. Rev. D 46 5236 [27]Witten E 1998 Adv. Theor. Math. Phys. 2 253 [28]Bekenstein J 1974 Lett. Nuovo Cimento 11 467 [29]Bekenstein J 1998 Cosmology and Gravitation ed Novello M(Atlasciences, France 2000) pp 1--85 gr-qc/9808028 [30]Hod S 1998 Phys. Rev. Lett. 81 4293 [31]Li X Z, Hao J G and Liu D J 2001 Phys. Lett. B 507 312 [32]McGuidan M D, Nappi C R and Yost S A 1992 Nucl. Phys. B 375 421 [33]Wheeler J A 1955 Phys. Rev. 97 511 [34]Cveti\v{c M and Youm D 1995 Phys. Rev. D 53 584 [35]Cveti\v{c M and Youm D 1996 Nucl. Phys. B 472 249 [36]Iyer S 1987 Phys. Rev. D 35 3632