摘要The excess Helmholtz free energy functional for associating Lennard-Jones (LJ) fluid is formulated in terms of a weighted density approximation for short-ranged interactions and a Weeks--Chandler--Andersen approximation for long-range attraction. Within the framework of density functional theory, phase equilibria, vapour--liquid surface tension and vapour--liquid nucleation properties including the density profile, work of formation, excess number of particles and critical supersaturation are investigated for associating LJ fluids with different numbers of association sites (M =1, 2, 3, 4) per particle. The influences of association energy and association sites on phase equilibria, surface tension and vapour-liquid nucleation properties are discussed.
Abstract:The excess Helmholtz free energy functional for associating Lennard-Jones (LJ) fluid is formulated in terms of a weighted density approximation for short-ranged interactions and a Weeks--Chandler--Andersen approximation for long-range attraction. Within the framework of density functional theory, phase equilibria, vapour--liquid surface tension and vapour--liquid nucleation properties including the density profile, work of formation, excess number of particles and critical supersaturation are investigated for associating LJ fluids with different numbers of association sites (M =1, 2, 3, 4) per particle. The influences of association energy and association sites on phase equilibria, surface tension and vapour-liquid nucleation properties are discussed.
FU Dong;LIAO Tao. Vapour-to-Liquid Nucleation in Associating Lennard-Jones Fluids with Multiple Association Sites[J]. 中国物理快报, 2007, 24(10): 2804-2807.
FU Dong, LIAO Tao. Vapour-to-Liquid Nucleation in Associating Lennard-Jones Fluids with Multiple Association Sites. Chin. Phys. Lett., 2007, 24(10): 2804-2807.
[1] Toner M, Cravalho E G and Karel M 1990 J. Appl. Phys. 67 1582 [2] David W I F 1992 J. Phys.: Condens. Matter 4 6087 [3] Evans R 1992 Fundamentals of Inhomogeneous Fluids edHenderson D (New York: Dekker) [4] Yu Y X and Wu J Z 2002 J. Chem. Phys. 117 2368 [5] Yu Y X and Wu J Z 2002 J. Chem. Phys. 117 10156 [6] Yu Y X and Wu J Z 2002 J. Chem. Phys. 116 7094 [7] Yu Y X, Wu J Z, You F Q and Gao G H 2005 Chin. Phys.Lett. 22 246 [8] Yu Y X, Wu J Z, Xin Y X and Gao G H 2004 J. Chem. Phys. 121 1535 [9] Zhou S Q 2003 Chin. Phys. Lett. 20 2107 [10] Yan B and Yang X N 2005 Chem. Eng. Sci. 60 3267 [11] Fu D 2005 Chin. Phys. Lett. 22 1378 [12] Fu D and Li X S 2006 J. Chem. Phys. 125 084716 [13] Cao D P, Jiang T and Wu J Z 2006 J. Chem. Phys. 124 164904 [14] Ye Z C, Cai J, Liu H L and Hu Y 2005 J. Chem. Phys. 123 194902 [15] Ye Z C, Chen H Y, Cai J, Liu H L and Hu Y 2006 J. Chem.Phys. 125 124705 [16] Talanquer V and Oxtoby D W 2000 J. Chem. Phys. 112 851 [17] Harrowell P and Oxtoby D W 1984 J. Chem. Phys. 80 1639 [18] Oxtoby D W and Evans R 1988 J. Chem. Phys. 89 7521 [19] Oxtoby D W and Harrowell P R 1992 J. Chem. Phys. 96 3834 [20] Oxtoby D W and Kashchiev D 1994 J. Chem. Phys. 100 7665 [21] Talanquer V and Oxtoby D W 1995 J. Chem. Phys. 102 2156 [22] Talanquer V and Oxtoby D W 1998 J. Chem. Phys. 109 223 [23] Talanquer V, Cunningham C and Oxtoby D W 2001 J. Chem.Phys. 114 6759 [24] Wertheim M S 1984 J. Stat. Phys. 35 19 [25] Wertheim M S 1985 J. Stat. Phys. 42 459 [26] Wertheim M S 1986 J. Chem. Phys. 85 2929 [27] Wertheim M S 1988 J. Chem. Phys. 88 1145 [28] Andersen H C, Weeks J D and Chandler D 1971 Phys. Rev.A 4 1597 [29] Carnahan N F and Starling K E 1969 J. Chem. Phys. 51 635 [30] Segura C J, Chapman W G and Shukla K P 1997 Mol. Phys. 90 759 [31] Verlet L and Weis J 1972 J. Phys. Rev. A 5 939 [32] Orea P 2005 J. Chem. Phys. 123 144704