An Innovative Gas Sensor with On-Chip Reference Using Monolithic Twin Laser
ZHANG Yong-Gang, TIAN Zhao-Bing, ZHANG Xiao-Jun, GU Yi, LI Ai-Zhen, ZHU Xiang-Rong, ZHENG Yan-Lan, LIU Sheng
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
An Innovative Gas Sensor with On-Chip Reference Using Monolithic Twin Laser
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
摘要An innovative gas sensor with on-chip reference using a monolithic twin laser is proposed. In this sensor a monolithic twin laser generates two closer laser beams with slight different wavelengths alternatively, one photodiode is used to catch both absorption and reference signals by time division multiplexing. The detection of nitrous oxide adopting this scheme using a 2.1μm antimonide laser and an InGaAs photodiode has been demonstrated experimentally with detection limit below 1ppm. Using this on chip reference scheme the fluctuations from the optical path and devices can be compensated effectively; the sensor system is simplified distinctly.
Abstract:An innovative gas sensor with on-chip reference using a monolithic twin laser is proposed. In this sensor a monolithic twin laser generates two closer laser beams with slight different wavelengths alternatively, one photodiode is used to catch both absorption and reference signals by time division multiplexing. The detection of nitrous oxide adopting this scheme using a 2.1μm antimonide laser and an InGaAs photodiode has been demonstrated experimentally with detection limit below 1ppm. Using this on chip reference scheme the fluctuations from the optical path and devices can be compensated effectively; the sensor system is simplified distinctly.
[1] Choi H K and Eglash S J 1992 Appl. Phys. Lett. 61 1154 [2] Faist J et al%, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y1994 Science 264 553 [3] Meyer J R et al %, Vurgaftman I, Yang R Q and Ram-Mohan L R1996 Electron. Lett. 32 45 [4] Kosterev A A and Tittel F K 2002 IEEE J. Quantum Electron. 38 582 [5] Smith S D, Crowder J G. and Hardaway H R 2002 Proc. SPIE 4651 157 [6] Wagner J, Mann Ch, Rattunde M and Weimann G. 2004 Appl.Phys. A 78 505 [7] Oh D B and Stanton A C 1997 Appl. Opt. 36 3294 [8] Vicet A et al%, Yarekha D A, P\'erona A, Rouillard Y, Gaillard S and Baranov A N2002 Spectrochim. Acta A 58 2405 [9] Miller J H et al%, Bakhirkin Y A, Ajtai T, Tittle F K, Hill C J and Yang R Q2006 Appl. Phys. B 85 391 [10] Zhang Y G et al %, Xu G. Y, Li A Z, Li Y Y, Gu Y, Liu S and Wei L,2006 Chin. Phys. Lett. 23 1780 [11] Zhang Y G., Li A Z, Qi M and Feng S L 2006 China Patent200610117006.2 Oct. 11 [12] Aiki K, Nakamura M and Umeda J 1976 Appl. Phys. Lett. 29 506 [13] Tsang W T 1980 Appl. Phys. Lett. 36 441 [14] Vicet A et al%, Yarekha D A, Ouvrard A, Teissier R, Alibert C and Baranov A N2003 IEE Proc. Optoelectron. 150 310 [15] McKellar A R W 2006 Spectrochim. Acta A 63 959 [16] Zhang Y G et al %, Zheng Y L, Lin C, Li A Z and Liu S2006 Chin. Phys. Lett. 23 2262 [17] Zhang Y G et al %, Gu Y, Zhu C, Hao G Q, Li A Z and Liu T D2006 Infr. Phys. Tech. 47 257 [18] Zhu C, Zhang Y G, Li A Z and Zheng Y L 2005 Semicond. Sci.Technol. 20 563