LI Yao-Yao, XU Gang-Yi, LI Ai-Zhen, WEI Lin, LI Hua, MEI Bin
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
LI Yao-Yao;XU Gang-Yi;LI Ai-Zhen;WEI Lin;LI Hua;MEI Bin
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
摘要We report lasing properties of distributed feedback quantum cascade lasers (DFB QCLs) including a double-phonon-resonance active region, at wavelength of about 8.4μm. A broad gain spectrum is generated due to the coupling between the lower laser level in the active region and the levels in the injector, and is demonstrated by the lasing spectrum of the corresponding Fabry--Perot QCLs whose width is 0.5μm at 1.5 times of the threshold current. As a result, the DFB QCLs employing different grating periods exhibit a wavelength span of 0.18μm at room temperature and total wavelength coverage of 0.28μm at various heat sink temperatures. A high side mode suppression ratio of about 30dB and a low threshold current density of 1.78kA/cm2 are achieved as the lasers operate at room temperature in pulsed mode.
Abstract:We report lasing properties of distributed feedback quantum cascade lasers (DFB QCLs) including a double-phonon-resonance active region, at wavelength of about 8.4μm. A broad gain spectrum is generated due to the coupling between the lower laser level in the active region and the levels in the injector, and is demonstrated by the lasing spectrum of the corresponding Fabry--Perot QCLs whose width is 0.5μm at 1.5 times of the threshold current. As a result, the DFB QCLs employing different grating periods exhibit a wavelength span of 0.18μm at room temperature and total wavelength coverage of 0.28μm at various heat sink temperatures. A high side mode suppression ratio of about 30dB and a low threshold current density of 1.78kA/cm2 are achieved as the lasers operate at room temperature in pulsed mode.
[1] Faist J, Capssso F, Sivco D L, Sirtori C, Hutchinson A L and Cho AY 1994 Science 264 553 [2] Beck M, Hofstetter D, Aellen T, Faist J, Oesterle U, Ilegems M,Gini E and Melchior H 2002 Science 295 301 [3] Hofstetter D, Beck M, Aellen T and Faist J 2001 Appl.Phys. Lett. 78 396 [4] Schrenk W, Finger N, Gianordoli S, Hvozdara L, Strasser G andGornik E 2000 Appl. Phys. Lett. 77 2086 [5] Bakhirkin Y A, Kosterev A A, Curl R F, Tittel F K, Yarekha D A,Hvozdara L, Giovannini M and Faist J 2006 Appl. Phys. B 82 149 [6] Beyer T, Braun M and Lambrecht A 2003 J. Appl. Phys. 93 3158 [7] Kosterev A A and Tittel F K 2002 IEEE J. Quantum.Electron. 38 582 [8] Maulini R, Beck M, Faist J and Gini E 2004 Appl. Phys.Lett. 84 1659 [9] Maulini R, Yarekha D A, Bulliard J M, Giovannini M, Faist J andGini E 2005 Opt. Lett. 30 2584 [10] Wittmann A, Giovannini M, Faist J, Hvozdara L and Blaser S 2006 Appl. Phys. Lett. 89 141116 [11] Diehl L, Bour D, Corzine S, Zhu J, Hofler G, Loncar M, Troccoli Mand Capasso F 2006 Appl. Phys. Lett. 89 081101 [12] Darvish S R, Zhang W, Evans A, Yu J S, Slivken S and Razeghi M2006 Appl. Phys. Lett. 89 251119 [13] Faist J, Capasso F, Sirtori C, Sivco D L, Baillargeon J N and ChoA Y 1996 Appl. Phys. Lett. 68 3680 [14] Aellen T, Beck M, Hoyler N, Giovannini M, Faist J and Gini E 2006 J. Appl. Phys. 100 043101 [15] Blaser S, Yarekha D A, Hvozdara L, Bonetti Y, Muller A, GiovanniniM and Faist J 2005 Appl. Phys. Lett. 86 041109 [16] Xu G Y, Li A Z, Li Y Y, Wei L, Zhang Y G, Lin C and Li H 2006 Appl. Phys. Lett. 89 161102 [17] Li A Z, Xu G Y, Zhang Y G, Li H and Zhang Z 2005 J.Crystal Growth 278 770