Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field
PU Sheng-Li1, CHEN Xian-Feng2, DI Zi-Yun2, GENG Tao1, XIA Yu-Xing2
1College of Science, University of Shanghai for Science and Technology, Shanghai 2000932Department of Physics, The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Shanghai Jiao Tong University, Shanghai 200240
Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field
PU Sheng-Li1;CHEN Xian-Feng2;DI Zi-Yun2;GENG Tao1;XIA Yu-Xing2
1College of Science, University of Shanghai for Science and Technology, Shanghai 2000932Department of Physics, The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Shanghai Jiao Tong University, Shanghai 200240
摘要We investigate the electrical properties of the nanostructured magnetic colloid without and with magnetic field. The competition between the directional motion of the charged magnetic nanoparticles and other minor nonmagnetic impurities (also small amount of ions) under applied voltage and their random orientation due to thermal activation is implemented to elaborate the electrically conduction mechanism under zero magnetic field. Two equivalent electric circuits are employed for explaining the charging and discharging processes. The tunnelling conduction mechanism upon application of externally magnetic field may exist in the nanostructured magnetic colloid. The alternation of the two conduction mechanisms accounts for the current spikes when the magnetic field is switched on or off. This work presents the peculiar electrical phenomena of the magnetically colloidal system.
Abstract:We investigate the electrical properties of the nanostructured magnetic colloid without and with magnetic field. The competition between the directional motion of the charged magnetic nanoparticles and other minor nonmagnetic impurities (also small amount of ions) under applied voltage and their random orientation due to thermal activation is implemented to elaborate the electrically conduction mechanism under zero magnetic field. Two equivalent electric circuits are employed for explaining the charging and discharging processes. The tunnelling conduction mechanism upon application of externally magnetic field may exist in the nanostructured magnetic colloid. The alternation of the two conduction mechanisms accounts for the current spikes when the magnetic field is switched on or off. This work presents the peculiar electrical phenomena of the magnetically colloidal system.
PU Sheng-Li;CHEN Xian-Feng;DI Zi-Yun;GENG Tao;XIA Yu-Xing. Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field[J]. 中国物理快报, 2007, 24(11): 3253-3256.
PU Sheng-Li, CHEN Xian-Feng, DI Zi-Yun, GENG Tao, XIA Yu-Xing. Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field. Chin. Phys. Lett., 2007, 24(11): 3253-3256.
[1] Papell S S 1965 US Patent 3215572 [2] Hong C Y et al 1999 Appl. Phys. Lett. 75 2196 [3] Yang S Y et al 2005 J. Appl. Phys. 97 093907 [4] Fang W X et al 2005 Chin. Phys. Lett. 22 2386 [5] Xu C et al 2005 Chin. Phys. Lett. 22 485 [6] Blums E 2002 J. Magn. Magn. Mater. 252 189 [7] Luo W, Du T and Huang J 1999 Phys. Rev. Lett. 82 4134 [8] Zhang J H et al 2005 Chin. Phys. Lett. 22 2944 [9] Yang S Y et al 2001 J. Magn. Magn. Mater. 226-230 1992 [10] Pu S et al 2005 Appl. Phys. Lett. 86 171904 [11] Pu S et al 2004 J. Appl. Phys. 96 5930 [12] Chieh J J et al 2007 Appl. Phys. Lett. 90 133505 [13] Pu S et al 2007 J. Appl. Phys. 101 053532 [14] Pu S et al 2006 J. Appl. Phys. 99 093516 [15] Pu S et al 2005 Appl. Phys. Lett. 87 021901 [16] Seo J W et al 2005 J. Microelectromech. Sys. 14 763 [17] Bertoni M I et al 2005 J. Appl. Phys. 97 103713 [18] Dugaev V K, Berakdar J and Barna\'s J 2006 Phys. Rev. Lett. 96 047208 [19] Paulson S et al 2000 Science 290 1742 [20] Sagmeister M et al 2006 Phys. Rev. Lett. 96 156601 [21] Furubayashi T 2003 J. Appl. Phys. 93 8026 [22] Chen P et al 2001 Phys. Rev. Lett. 87 107202 [23] Tatara G et al 1999 Phys. Rev. Lett. 83 2030 [24] Ebels U et al 2000 Phys. Rev. Lett. 84 983 [25] R\"uster C et al 2003 Phys. Rev. Lett. 91 216602 [26] Zhuravlev M Y et al 2003 Appl. Phys. Lett. 83 3534 [27] Hua S Z and Chopra H D 2003 Phys. Rev. B 67 060401 [28] Garc\'\i a N, Mu\~ noz M and Zhao Y W 1999 Phys. Rev.Lett. 82 2923 [29] Novotny V J and Harbour J R 1984 Appl. Phys. Lett. 44 264 [30] Hong C Y et al 1997 J. Appl. Phys. 81 4275