摘要symmetry method, as a generalization of the conditional symmetry and Lie Backlund symmetry methods, is developed to study the Hamilton--Jacobi equations. It is shown that the equation ut=uxn+1+B(u)ux+C(u) admits a class of conditional Lie Backlund symmetry for certain functions B(u) and C(u). As a result, a complete description of structure of solutions to the resulting equations associated to the conditional Lie Backlund symmetry is performed.
Abstract:symmetry method, as a generalization of the conditional symmetry and Lie Backlund symmetry methods, is developed to study the Hamilton--Jacobi equations. It is shown that the equation ut=uxn+1+B(u)ux+C(u) admits a class of conditional Lie Backlund symmetry for certain functions B(u) and C(u). As a result, a complete description of structure of solutions to the resulting equations associated to the conditional Lie Backlund symmetry is performed.
[1]Crandall M G and Lions P L 1983 Trans. Amer. Math.Soc. 277 1 [2]Evans L C 1998 Partial Differential Equations,Graduate Studies in Mathematics (Providence, RI: AmericanMathematical Society) [3]Galaktionov V A 2004 Geometric Sturmian Theory of NonlinearParabolic Equations and Applications (Boca Raton, FL: Chapman &Hall/CRC) [4]Olver P J 986 Applications of Lie Groups to DifferentialEquations (New York: Springer) [5]Bluman G W and Cole J D 1969 J. Math. Mech. 181025 [6]Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201 [7]Lou S Y 1990 Phys. Lett. A 151 133 [8]Fuschych W I and Zhdanov R Z 1994 J. Nonlinear Math.Phys. 1 60 [9]Zhdanov R Z 1995 J. Phys. A: Math. Gen. 283841. [10]Fokas A S and Liu Q M 1994 Phys. Rev. Lett. 72 3293 [11]Qu C Z 1997 Stud. Appl. Math. 99 107 [12]Qu C Z 1999 IMA J. Appl. Math. 62 283 [13]Qu C Z 2000 Nonlinear Anal. TMA 4 301 [14]Qu C Z, Zhang S L and Liu R C 2001 Physica D 144 97 [15]Zhang S L, Lou S L and Qu C Z 2003 J. Phys. A: Math.Gen. 36 12223 [16]Qu C Z 1999 J. Aust. Math. Soc. B 41 1 [17]Qu C Z and Estevez P G 2004 Nonlinear Anal. TMA 57 549 [18]Qu C Z, Ji L N and Wang L Z 2007 Stud. Appl. Math. 119 355 [19]Goard J M 2000 Eur. J. Appl. Math. 11 215 [20]Basarab-Horwath P and Zhdanov R Z 2001 J. Math.Phys. 42 376 [21]Zhdanov R Z and Andreitsev A Yu 2000 J. Phys. A:Math. Gen. 33 5763 [22]Zhdanov R Z 2002 Nonlinear Dynamics 28 17