摘要Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-III universe by assuming conservation law for the energy-momentum tensor. Exact solutions of the field equations are obtained by using the scalar of expansion proportional to the shear scalar θ∝σ, which leads to a relation between metric potential B= Cn, where n is a constant. The corresponding physical interpretation of the cosmological solutions are also discussed.
Abstract:Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-III universe by assuming conservation law for the energy-momentum tensor. Exact solutions of the field equations are obtained by using the scalar of expansion proportional to the shear scalar θ∝σ, which leads to a relation between metric potential B= Cn, where n is a constant. The corresponding physical interpretation of the cosmological solutions are also discussed.
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
引用本文:
J. P. Singh;R. K. Tiwari;Pratibha Shukla. Bianchi Type-III Cosmological Models with Gravitational Constant G and the Cosmological Constant ∧[J]. 中国物理快报, 2007, 24(12): 3325-3327.
J. P. Singh, R. K. Tiwari, Pratibha Shukla. Bianchi Type-III Cosmological Models with Gravitational Constant G and the Cosmological Constant ∧. Chin. Phys. Lett., 2007, 24(12): 3325-3327.
[1] Dirac P A M 1937 Nature 139 323 [2] Dirac P A M 1937 Nature 139 1001 [3] Dirac P A M 1938 Proc. R. Soc. London 165 199 [4] Dirac P A M 1975 The General Theory of Relativity (NewYork: Wiley) [5] Hoyle F and Narlikar J V 1964 Proc. R. Soc. London A 282 191 [6] Canuto V, Admas P J, Hsich S H and Siang T E 1977 Phys.Rev. D 16 1643a [7] Canuto V, Hsieh S H and Adams P J 1977 Phys. Rev. Lett. 39 429b [8] Dersarkissian M 1985 Nuovo Cimento B 88 29 [9] Zeldovich Y B 1967 Sov. Phys. JETP Lett. 6 316 [10] Zeldovich Y B 1968 Sov. Phys. JETP Lett. 14 1143 [11] Ginzburg V L Kirzhnits D A and Lyubushin A A 1971 Sov.Phys. JETP 33 242 [12] Fulling S A, Parker L and Hu B L 1974 Phys. Rev. D 10 3905 [13] Bergmann P G 1968 Int. J. Theor. Phys. 1 25 [14] Drietlein J 1974 Phys. Rev. Lett. 33 1243 [15] Linde A D 1974 Sov. Phys. JETP Lett. 19 183 [16] Abdel-Rahman A M M 1992 Phys. Rev. D 45 3497 [17] Berman M S 1991 Gen. Relativ. Gravit. 23 465 [18] Abdussttar and Vishwakarma R G 1977 Australian J. Phys. 50 893 [19] Abdussttar and Vishwakarma R G 1995 Curr. Sci. 69924 [20] Abdussttar and Vishwakarma R G 1996 Pramana J. Phys. 47 41 [21] Arbab A I 1997 Gen. Relativ. Gravit. 29 1 [22] Beesham A 1986 Nuovo Cimento B 96 17 [23] Beesham A 1986 Int. J. Theor. Phys. 25 1295 [24] Kilinc C B 2006 Astrophys. Space Sci. 289 103 [25] Wang X X 2003 Chin. Phys. Lett. 20 615 [26] Wang X X 2004 Astrophys. Space Sci. 293 933 [27] Wang X X 2005 Chin. Phys. Lett. 22 29 [28] Wang X X 2006 Chin. Phys. Lett. 23 1702 [29] Berman M S and Som M M 1990 Int. J. Ther. Phys. 19 1411 [30] Kalligas D, Wesson P and Everitt C W 1992 Gen. Relativ.Gravit. 24 351 [31] Abdussattar and Vishwakarma R G 1997 Australian J.Phys. 50 803