摘要We investigate the tunnelling radiation of charged and magnetized massive particles from a Banados--Teitelboim--Zanelli (BTZ) black hole by extending the Parikh--Wilczek tunnelling framework. In order to calculate the emission rate, we reconstruct the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges, and treat the charges as an equivalent electric charge for simplicity in the later calculation. The result supports Parikh-Wilczek's conclusion, that is, the Hawking thermal radiation actually deviates from perfect thermality and agrees with an underlying unitary theory.
Abstract:We investigate the tunnelling radiation of charged and magnetized massive particles from a Banados--Teitelboim--Zanelli (BTZ) black hole by extending the Parikh--Wilczek tunnelling framework. In order to calculate the emission rate, we reconstruct the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges, and treat the charges as an equivalent electric charge for simplicity in the later calculation. The result supports Parikh-Wilczek's conclusion, that is, the Hawking thermal radiation actually deviates from perfect thermality and agrees with an underlying unitary theory.
HE Tang-Mei;ZHANG Jing-Yi. Tunnelling Radiation of Charged and Magnetized Massive Particles from BTZ Black Holes[J]. 中国物理快报, 2007, 24(12): 3336-3339.
HE Tang-Mei, ZHANG Jing-Yi. Tunnelling Radiation of Charged and Magnetized Massive Particles from BTZ Black Holes. Chin. Phys. Lett., 2007, 24(12): 3336-3339.
[1] Kraus P and Wilczek F 1995 Nucl. Phys. B 433 403 [2] Medved A J M 2002 Phys. Rev. D 66 124009 [3] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042 [4] Parikh M K 2004 Int. J. Mod. Phys. D 13 2355 [5] Parikh M K hep-th/0402166 [6] Hemming S and Keski-Vakkuri E 2001 Phys. Rev. D 64 044006 [7] Alves M 2001 Int. J. Mod. Phys. D 10 575 [8] Vagenas E C 2001 Phys. Lett. B 503 399 [9] Vagenas E C 2002 Phys. Lett. B 533 302 [10] Vagenas E C 2002 Mod. Phys. Lett. A 17 609 [11] Vagenas E C 2003 Phys. Lett. B 559 65 [12] Vagenas E C 2004 Phys. Lett. B 584 127 [13] Vagenas E C 2004 Mod. Phys. Lett. A 20 2449 [14] Arzano M, Medved A J M and Vagenas E C 2005 J. HighEnergy Phys. 0509 037 [15] Setare M R and Vagenas E C 2005 Int. J. Mod. Phys. A 20 7219 [16] Zhang J Y and Zhao Z 2005 Mod. Phys. Lett. A 20 1673 [17] Zhang J Y and Zhao Z 2005 Phys. Lett. B 618 14 [18] Liu W B 2006 Phys. Lett. B 634 541 [19] Wu S Q and Jiang Q Q 2006 J. High Energy Phys. 0603 079 [20] Zhang J Y and Zhao Z 2005 Nucl. Phys. B 725 173 [21] Zhang J Y and Zhao Z 2005 J. High Energy Phys. 0510 055 [22] Zhang J Y and Zhao Z 2006 Phys. Lett. B 638 110 [23] Zhang J Y and Zhao Z 2006 Acta Phys. Sin. 55 3796 [24] Zhang J Y and Zhao Z 2006 Mod. Phys. Lett. A 21 1865 [25] Zhang J Y and Zhao Z 2006 Chin. Phys. Lett. 23 1099 [26] Jun Ren, Zhang J Y and Zhao Z 2006 Chin. Phys. Lett. 232019 [27] Jiang Q Q, Wu S Q and Cai X 2006 Phys. Rev. D 73 064003 [28] Zhang J Y and Fan J H 2007 Phys. Lett. B 648 133 [29] Ba\~nados M, Teitelboim C and Zanelli J 1992 Phys. Rev.Lett. 69 1849 [30] Ba\~nados M, Henneaux M, Teitelboim C and Zanelli J 1993 Phys. Rev. D 48 1506 [31] Carlip S 1995 Class. Quantum Grav. 12 2853 [32] Carlip S 1995 Phys. Rev. D 51 632 [33] Carlip S 1997 Phys. Rev. D 55 878 [34] Medved A J M 2002 Class. Quantum Grav. 19 589 [35] Hortacsu M, Ozcelik H T and Yapiskan B 2003 Gen.Relativ. Gravit. 35 1209 [36] Li H L, Yang S Z, Jiang Q Q and Qi D J 2006 Phys. Lett.B 641 139 [37] Vagenas E C 2002 Phys. Lett. B 533 302 [38] Liu W B 2006 Phys. Lett. B 634 541 [39] Vagenas E C 2002 Mod. Phys. Lett. A 17 609 [40] Setare M R and Vagenas E C 2004 Phys. Lett. B 584 127