Phase Controlled Laser Interference for Tunable Phase Gratings in Dye-Doped Nematic Liquid Crystals
LI Ming1, ZHANG Pei-Qing1, GUO Jing1, XIE Xiang-Sheng1, LIU Yi-Kun1, LIANG-Bing1, ZHOU Jian-Ying1, XIANG Ying2
1State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 5102752School of Information Engineering, Guangdong University of Technology, Guangzhou 510006
Phase Controlled Laser Interference for Tunable Phase Gratings in Dye-Doped Nematic Liquid Crystals
LI Ming1;ZHANG Pei-Qing1;GUO Jing1;XIE Xiang-Sheng1;LIU Yi-Kun1;LIANG-Bing1;ZHOU Jian-Ying1;XIANG Ying2
1State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 5102752School of Information Engineering, Guangdong University of Technology, Guangzhou 510006
摘要A phase controlled multi-beam interference is applied to excite the doped liquid crystals. Control of the phase difference between the exciting beams allows the external control of the interference pattern inside the liquid crystal. The dynamic variation of the grating is made possible with a time-dependent phase change to derive the nonlinear refractive index as well as the responding speed of the material. The induced grating structure is numerically modelled with reorientational phase gratings in the liquid crystal, and the diffraction dynamics is found to be in good agreement between theoretical and experimental results.
Abstract:A phase controlled multi-beam interference is applied to excite the doped liquid crystals. Control of the phase difference between the exciting beams allows the external control of the interference pattern inside the liquid crystal. The dynamic variation of the grating is made possible with a time-dependent phase change to derive the nonlinear refractive index as well as the responding speed of the material. The induced grating structure is numerically modelled with reorientational phase gratings in the liquid crystal, and the diffraction dynamics is found to be in good agreement between theoretical and experimental results.
[1] Liu Y J, Sun X W 2006 Appl. Phys. Lett. 89 171101 [2] Drevenv sek-Olenik I et al %, Jazbinv sek M, Sousa M E,%Fontecchio A K, Crawford G P and v Copiv c M2004 Phys. Rev. E 69 051703 [3] Lu X M, Lu Q H, Lee F K and Tsui O K C 2006 Appl. Phys. Lett. 89 203507 [4] Xie X S et al %, Li M, Guo J, Liang B, Wang Z X, Sinitskii A, Xiang Y and%Zhou J Y2007 Opt. Exp. 15 7032 [5] Hsiung H, Shi L P and Shen Y R 1984 Phys. Rev. A 301453 [6] Piccirillo B and Santamato E 2004 Phys. Rev. E 69056613 [7] Brasselet E et al %, Galstian T V, Dub'eL J, Krimer D O and Kramer L2005 J. Opt. Soc. Am. B 22 1671 [8] Marrucci L et al %, Paparo D, Maddalena P, Massera E, Prudnikova E and%Santamato E1997 J. Chem. Phys. 107 9783 [9] Klysubun P and Indebetouw G 2002 J. Appl. Phys. 91 897 [10] Kreuzer M, Benkler E, Paparo D, Casillo G, and Marrucci L 2003 Phys. Rev. E 68 011701 [11] Truong T V, Xu L, and Shen Y R 2005 Phys. Rev. E 72051709 [12] Ying X, Li M, Lao L, Jie L and Zhou J Y 2007 Appl.Phys. A 86 207 [13] Li Z Y and Shi J 2000 Phys. Lett. A 270 326 [14] Moharam M G and Young L 1978 Appl. Opt. 17 1757 [15] Zhang G Q, Montemezzani G and G"unter P 2000 J. Appl. Phys. 88 15 [16] Ono H, Saito I and Kawatsuki N 1998 Appl. Phys. Lett. 72 1942 [17] Golemme A, Kippelen B and Peyghambarian N 1998 Appl. Phys.Lett. 73 2408 [18] Capar M I and Cebe E 2005 Chem. Phys. Lett. 407 454