P-BN/n-Si Heterojunction Prepared by Beryllium ion Implantation
HE Bin1,3, CHEN Guang-Hua1, LI Zhi-Zhong1, DENG Jin-Xiang2,ZHANG Wun-Jun3
1College of Materials Science and Technology, Beijing University of Technology, Beijing 1000222College of Applied Sciences, Beijing University of Technology, Beijing 1000223Center of Super-Diamond and Advance Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
P-BN/n-Si Heterojunction Prepared by Beryllium ion Implantation
HE Bin1,3;CHEN Guang-Hua1;LI Zhi-Zhong1;DENG Jin-Xiang2,ZHANG Wun-Jun3
1College of Materials Science and Technology, Beijing University of Technology, Beijing 1000222College of Applied Sciences, Beijing University of Technology, Beijing 1000223Center of Super-Diamond and Advance Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
摘要A boron nitride (BN)/silicon p-n heterojunction is fabricated by implanting beryllium (Be) ions into the BN films deposited by rf sputtering on n-type Si (111) substrates. The FTIR observations indicate that the films deposited have a mixed phase composition of sp2- and sp3-hybridized BN. Considering the thickness of the BN layer, the ion implantation is conducted at an ion energy of 100keV with the dose of 5×1015cm-2. After annealing at a high temperature, the surface resistance of the BN film decreases significantly by 6 orders down to 1.2×105Ω. Space-charge-limited current characteristic, which indicates the existence of shallow traps in the film, is observed. Current-voltage measurements across the BN film and the Si substrate reveal a clear rectification feature, demonstrating the achievement of p-type doping of BN films by Be ion implantation.
Abstract:A boron nitride (BN)/silicon p-n heterojunction is fabricated by implanting beryllium (Be) ions into the BN films deposited by rf sputtering on n-type Si (111) substrates. The FTIR observations indicate that the films deposited have a mixed phase composition of sp2- and sp3-hybridized BN. Considering the thickness of the BN layer, the ion implantation is conducted at an ion energy of 100keV with the dose of 5×1015cm-2. After annealing at a high temperature, the surface resistance of the BN film decreases significantly by 6 orders down to 1.2×105Ω. Space-charge-limited current characteristic, which indicates the existence of shallow traps in the film, is observed. Current-voltage measurements across the BN film and the Si substrate reveal a clear rectification feature, demonstrating the achievement of p-type doping of BN films by Be ion implantation.
HE Bin;CHEN Guang-Hua;LI Zhi-Zhong;DENG Jin-Xiang;ZHANG Wun-Jun. P-BN/n-Si Heterojunction Prepared by Beryllium ion Implantation[J]. 中国物理快报, 2008, 25(1): 219-222.
HE Bin, CHEN Guang-Hua, LI Zhi-Zhong, DENG Jin-Xiang, ZHANG Wun-Jun. P-BN/n-Si Heterojunction Prepared by Beryllium ion Implantation. Chin. Phys. Lett., 2008, 25(1): 219-222.
[1] Chen G H and Deng J X 2002 The Novel Electronic FilmMaterials (Beijing: Chemical Industry Press) p 169 (in Chinese) [2] Taniguchi T, Tanaka J, Mishima O, Ohsawa T and Yamaoka S 1993 Appl. Phys. Lett. 62 576 [3] Ronning C, Feldermann H and Hofs\"as H 2000 DiamondRelat. Mater. 9 1767 [4] Zhang W J, Chan C Y, Chan K M, Bello I, Lifshitz Y and Lee S T 2003 Appl. Phys. A 76 953 [5] Zhang W J, Bello I, Lifshitz Y and Lee S T 2003 MRS Bull. 28 184 [6] Yang H S 2006 Acta Phys. Sin. 55 4238 (in Chinese) [7] Zhang W J, Chan C Y, Meng X M, Fung M K, Bello I, Lifshitz Y, Lee ST and Jiang X 2005 Angew. Chem. Int. Ed. 44 4749 [8] Zhang X W, Boyen H G, Deyneka N, Ziemann P, Banhart F and Schreck M2003 Nature Mater. 2 312 [9] Zhang W J, Bello I, Lifshitz Y, Chan K M, Meng X M, Wu Y, Chan C Yand Lee S T 2004 Adv. Mater. 16 1405 [10] Mishima O, Tanaka J, Yamaoka S and Fukunaga O 1987 Science 238 181 [11] Taniguchi T, Tanaka J, Mishima O, Ohsawa T and Yamaoka S 1993 Diamond Relat. Mater. 2 1473 [12] Watanabe K, Taniguchi T, Kanda H and Shishonok E M 2003 Appl.Phys. Lett. 82 2972 [13] Mishima O, Era K, Tanaka J and Yamaoka S 1988 Appl. Phys.Lett. 53 962 [14] Szmidt J, Werbowy A, Michalski A, Olszyna A, Sokolowska A andMitura S 1995 Diamond Relat. Mater. 4 1131 [15] Sugino T, Tanioka K, Kawasaki S and Shirafuji J 1998 DiamondRelate. Mater. 7 632 [16] Chen G H, Deng J X, Song X M, Li M D, Yu C N and Feng Z J 2002 Res. Rrog. SSE 22 483 (in Chinese) [17] Lu M, Bousetta A, Bensaoula A, Waters K and Schultz J A 1996 Appl. Phys. Lett. 68 622 [18] Alexander M Z 1992 Mater. Sci. Engin. B 11 179 [19] Yamada-Takamura Y and Yoshida T 2002 J. Vac. Sci.Technol. B 20 936 [20] Huang H W, Kao C C, Tsai J Y, Yu C C, Chu C F, Lee J Y, Kuo S Y,Lin C F, Kuo H C and Wang S C 2004 Mater. Sci. Engin. B 107237 [21] Deal M D and Robinson H G 1989 Appl. Phys. Lett. 55996 [22] Emanuele R 1995 Ion Implantation: Basics to DeviceFabrication (Boston, MA: Kluwer) [23] Tsuda O, Yamada Y, Fujii T, Yoshida T 1995 J. Vac. Sci.Technol. A 13 2843 [24] Kester D J, Ailey K S, Lichtenwalner D J and Davis R F 1994 J. Vac. Sci. Technol. A 12 3074 [25] Friedmann T A, Mirkedmi P B, Medlin D L, Mccarty K F, Klaus E J,Boehme D R, Johnsen H A, Mills M J, Ottesen D K and Barbour J C 1994 J. Appl. Phys. 76 3088 [26] Lampert M A and Mark P 1970 Current Injection in Solids (NewYork: Academic) [27] Schmolla W and Hartnagel H L 1983 Solid-State Electron. 26 931 [28] Shishonok N A, Gatal'skii G V and Erosh A Y 2005 Crystallog.Rep. 50 S58 [29] Dou Q P, Chen Z G, Jia G, Ma H T, Cao K and Zhang T C 2006 Chin. J. Semiconduct. 27 609 [30] Sze S M 1981 Physics of Semiconductor Devices (New York:Wiley) [31] Mohammad S N 2002 Solid-State Electron. 46 203