摘要Using a mixture of ZnO and Te powders as the source material, ZnO nanoleaves with high yield and uniform morphology are fabricated by thermal evaporation. Each nanoleaf is constructed with a nanowire and a nanodisc on one side of the nanowire near the top. The polygonal nanodisc is in symmetric distribution in relation to the nanowires and has polar planes ±(0001) as surfaces. A local homoepitaxial growth mechanism of ZnO polar nanodiscs induced by Te is proposed. With thin nanodiscs, the ZnO nanoleaves could be used in nanolasers, sensors, and photoelectronic nanodevices. Room-temperature photoluminescence result implies good crystalline quality of the ZnO nanoleaves.
Abstract:Using a mixture of ZnO and Te powders as the source material, ZnO nanoleaves with high yield and uniform morphology are fabricated by thermal evaporation. Each nanoleaf is constructed with a nanowire and a nanodisc on one side of the nanowire near the top. The polygonal nanodisc is in symmetric distribution in relation to the nanowires and has polar planes ±(0001) as surfaces. A local homoepitaxial growth mechanism of ZnO polar nanodiscs induced by Te is proposed. With thin nanodiscs, the ZnO nanoleaves could be used in nanolasers, sensors, and photoelectronic nanodevices. Room-temperature photoluminescence result implies good crystalline quality of the ZnO nanoleaves.
[1] Jin Z C, Hamberg I and Granqvist C G 1988 J. Appl.Phys. 64 5117 [2] Pearton S J, Abernathy C R, Overberg M E, Thaler G T, NortonD P, Theodoropoulou N, Hebard A F, Park Y D, Ren F, Kim J and Boatner LA 2003 J. Appl. Phys. 93 1 [3] Macdonald A H, Schiffer P and Samarth N 2005 Nat.Mater. 4 195 [4] Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2005 Progr. Mater. Sci. 50 293 [5] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin YD, Kim F and Yan Y Q 2003 Adv. Mater. 15 353 [6] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E,Russo R and Yang P 2001 Science 292 1897 [7] Zhang B P, Binh N T, Wakatsuki K, Segawa Y, Yamada Y, UsamiN, Kawasaki M and Koinuma H 2004 Appl. Phys. Lett. 84 4098 [8] Lao C S, Gao P X, Yang R S, Zhang Y, Dai Y and Wang Z L 2005 Chem. Phys. Lett. 417 359 [9] Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S and Wang Z L2005 Science 309 1700 [10] Gao H, Zhang X T, Zhou M Y, Zhang Z G and Wang X Z 2007 Nanotechnology 18 065601 [11] Gao P X, Lao C S, Ding Y and Wang Z L 2006 Adv. Funct.Mater. 16 53 [12] Li F, Ding Y, Gao P X, Xin X Q and Wang Z L 2004 AngewChem. 116 5350 [13] Xu C X, Sun X W, Dong Z L and Yu M B 2004 Appl. Phys.Lett. 85 3878 [14] Liu J, Zhang Y, Qi J J, He J, Huang Y H and Zhang X M 2006 Acta Phys. Chim. Sin. 22 38 (in Chinese) [15] Wang X D, Song J H and Wang Z L 2006 Chem. Phys. Lett. 424 86 [16] Lauhon L J, Gudiksen M S, Wang D and Lieber C M 2002 Nature 420 57 [17] Liang Y, Zhang X T, Liu Z, Qin L, Zhang E, Zhao C Z, Gao Hand Zhang Z G 2006 Physica E 33 191 [18] Xing Y J, Xi Z H, Xue Z Q, Zhang X D, Song J H, Wang R M, XuJ, Song Y, Zhang S L and Yu D P 2003 Appl. Phys. Lett. 831689 [19] Li Y B, Bando Y, Sato T and Kurashima K 2002 Appl.Phys. Lett. 81 144 [20] Djuri\v si\'c A B, Choy W C H, Roy V A L, Leung Y H, Kwong C Y,Cheah K W, Rao T K G, Chan W K, Lui H F and Surya C 2004 Adv.Funct. Mater. 14 856 [21] Dijken A V, Meulenkamp E A, Vanmaekelbergh D and Meijerink A2000 J. Phys. Chem. B 104 1715 [22] Zhang X T, Liu Y C, Zhang J Y, Lu Y M, Shen D Z, Fan X Wand Kong X G 2003 J. Crystal Growth 254 80