摘要The dynamical attractor of the modified Chaplygin gas (MCG) model is studied. The dynamical analysis indicates that the phase ωMCG=-1 is a dynamical attractor and the equation of state of the MCG approaches it from either ωMCG> -1 or ωMCG<-1, independent of the choice of its initial densityparameter and the ratio of pressure to critical energy density. Therefore our universe will not end up with Big Rip in the future. Moreover, the evolutions of the density parameters Ωγ and ΩMCG are quite different. For different initial values of x and y, Ωγ decreases and ΩMCG increases as time increases, and they will eventually approach Ωγ=0 and ΩMCG=1, i.e., de Sitter phase. This implies that when there is not the interaction (i.e., the energy transfer) between the barotropic background fluid and modified Chaplygin gas (MCG), the behaviour of the MCG will be similar to λCDM in the future.
Abstract:The dynamical attractor of the modified Chaplygin gas (MCG) model is studied. The dynamical analysis indicates that the phase ωMCG=-1 is a dynamical attractor and the equation of state of the MCG approaches it from either ωMCG> -1 or ωMCG<-1, independent of the choice of its initial densityparameter and the ratio of pressure to critical energy density. Therefore our universe will not end up with Big Rip in the future. Moreover, the evolutions of the density parameters Ωγ and ΩMCG are quite different. For different initial values of x and y, Ωγ decreases and ΩMCG increases as time increases, and they will eventually approach Ωγ=0 and ΩMCG=1, i.e., de Sitter phase. This implies that when there is not the interaction (i.e., the energy transfer) between the barotropic background fluid and modified Chaplygin gas (MCG), the behaviour of the MCG will be similar to λCDM in the future.
[1] A G Riess et al 1998 Astron. J. 116 1009 [2] A G Riess et al 2004 Astro. J. 607 665 [3] S Perlmutter et al 1999 Astrophys. J. 517 565 [4] C L Bennett et al 2003 Astrophys. J. Suppl. 148 1 [5] D N Spergel et al 2003 Astrophys. J. Suppl. 148 175 [6] S Kachru, R Kallosh, A Linde and S P Trivedi 2003 Phys.Rev. D 68 046005 [7] S Weinberg 1989 Rev. Mod. Phys. 61 1 [8] C Wetterich 1988 Nucl. Phys. B 302 668 [9] B Ratra and J Peebles 1988 Phys. Rev. D 37 321 [10]P G Ferreira and M Joyce 1997 Phys. Rev. Lett. 79 4740 [11]P G Ferreira and M Joyce 1998 Phys. Rev. D 58 023503 [12]E J Copeland, A R Liddle and D Wands 1998 Phys. Rev. D 57 4686 [13]R R Caldwell, R Dave and P J Steinhardt 1998 Phys. Rev.Lett. 80 1582 [14]I Zlatev, L M Wang and P J Steinhardt 1999 Phys. Rev.Lett. 82 896 [15]P J Steinhardt, L M Wang and I Zlatev 1999 Phys. Rev. D 59 123504 [16]J Khoury and A Weltman 2004 Phys. Rev. Lett. 93 171104 [17]P Brax, C Bruck, A C Davis, J Khoury and A Weltman 2004 Phys. Rev. D 70 123518 [18]A Y Kamenshchik, U Moschella and V Pasquier 2001 Phys.Lett. B 511 265 [19]M C Bento, O Bertolami and A A Sen 2002 Phys. Rev. D 66 043507 [20]N Bilic, G B Tupper and R D Viollier 2002 Phys. Lett. B 535 17 [21] H B Benaoum hep-th/0205140 [22] L P Chimento 2004 Phys. Rev. D 69 123517 [23] L P Chimento and R Lazkoz 2005 Phys. Lett. B 615 146 [24] J G Hao and X Z Li 2005 Phys. Lett. B 606 7 [25] S C C Ng, N J Nunes and F Rosati 2001 Phys. Rev. D 64 083510 [26] Y B Wu and S Li et al 2007 Mod. Phys. Lett. A 22 783 [27] Y B Wu and S Li et al 2007 Gen. Relativ. Grav. 39 653 [28] E J Copel and A R Liddle and D Wands 1998 Phys. Rev. D 57 4686 [29] R R Caldwell R Dave and P J Steinhardt 1998 Phys. Rev.Lett. 80 1582 [30] A Macorra and G Piccinelli 2000 Phys. Rev. D 61 123503 [31] J D Barrow, R Bean and J Magueijo 2000 Mon. Not. R.Astron. Soc. 316 L41 [32] V Sahni and A A Starobinsby 2000 Int. J. Mod. Phys. D 9 373