摘要We give a direct method for calculating the quark-number susceptibility at finite chemical potential and zero temperature. In this approach the quark-number susceptibility is totally determined by G[μ](p) (the dressed quark propagator at finite chemical potential μ). By applying the general result in our previous study [Phys. Rev. C 71(2005)015205, 034901, 73 (2006) 016004 ] G[μ](p) is calculated from the model quark propagator proposed by Pagels and Stokar [Phys. Rev. D 20(1979)2947]. The full analytic expression of the quark-number susceptibility at finite μ and zero T is obtained.
Abstract:We give a direct method for calculating the quark-number susceptibility at finite chemical potential and zero temperature. In this approach the quark-number susceptibility is totally determined by G[μ](p) (the dressed quark propagator at finite chemical potential μ). By applying the general result in our previous study [Phys. Rev. C 71(2005)015205, 034901, 73 (2006) 016004 ] G[μ](p) is calculated from the model quark propagator proposed by Pagels and Stokar [Phys. Rev. D 20(1979)2947]. The full analytic expression of the quark-number susceptibility at finite μ and zero T is obtained.
HE Deng-Ke;JIANG Yu;FENG Hong-Tao;SUN Wei-Min;ZONG Hong-Shi;. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature[J]. 中国物理快报, 2008, 25(2): 440-443.
HE Deng-Ke, JIANG Yu, FENG Hong-Tao, SUN Wei-Min, ZONG Hong-Shi,. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature. Chin. Phys. Lett., 2008, 25(2): 440-443.
[1] Gottlieb S, Liu W, Toussaint D, Renken R L and Sugar R L 1987 Phys. Rev. Lett. 59 2247 [2] Mclerran L 1987 Phys. Rev. D 36 3291 [3] Gavai R V, Potvin J and Sanielevici S 1989 Phys. Rev. D 40 2743 [4] Kunihiro T 1991 Phys. Lett. B 271 395 [5] Jeon S and Koch V 2000 Phys. Rev. Lett. 85 2076 [6] Asakawa M, Heinz U and M\"{uller B 2000 Phys. Rev.Lett. 85 2072 [7] Fujii H 2003 Phys. Rev. D 67 094018 [8] Fujii H and Ohtani M 2004 Phys. Rev. D 70 014016 [9] Hatta Y and Ikeda T 2003 Phys. Rev. D 67 014028 [10] Gavai R V and Gupta S 2003 Phys. Rev. D 68 034506 [11] Ghosh S K, Mukherjee T, Mustafa M G and Ray R 2006 Phys.Rev. D 73 114007 [12] Aoki Y, Endrodi G, Fodor Z, Katz S D and Szabo K K 2006 Nature 443 46 [13] Aoki Y, Fodor Z, Katz S D and Szabo K K 2006 Phys.Lett. B 643 675 [14] Sasaki C, Friman B and Redlich K 2007 Phys. Rev. D 75 054026 [15] He M, He D K, Feng H T, Sun W M and Zong H S 2007 Phys.Rev. D 76 076005 [16] Sun W M and Zong H S 2007 Int. J. Mod. Phys. A 22 3201 [17] He M, Sun W M, Feng H T and Zong H S 2007 J. Phys. G 34 2655 [18] Roberts C D and Williams A G 1994 Prog. Part. Nucl.Phys. 33 477 and references therein [19] Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45S1 1 and references therein [20] Maris P and Roberts C D 2003 Int. J. Mod Phys. E 12 297 [21] Alkofer R and Smekal L V 2001 Phys. Rept. 353281 Fischer C S and Alkofer R 2003 Phys. Rev. D 67 094020and references therein [22] Zong H S, Chang L, Hou F Y, Sun W M and Liu Y X 2005 Phys. Rev. C 71 015205 Hou F Y, Chang L, Sun W M, Zong H S and Liu Y X 2005 Phys.Rev. C 72 034901 [23] Feng H T, Hou F Y, He X, Sun W M and Zong H S 2006 Phys.Rev. D 73 016004 [24] Blaschke D, Roberts C D and Schmidt S 1998 Phys. Lett.B 425 232 [25] Maris P, Roberts C D and Tandy P C 1998 Phys. Lett. B 420 267 [26] Bender Detmold W and Thomas A W 2001 Phys. Lett. B 516 54 [27] Pagels H and Stokar S 1979 Phys. Rev. D 20 2947 [28] Kamleh W, Bowman P O, Lenweber D B, Willams A G and Zhang JarXiv 0705.4129 [29] Shi Y M, Wu K P, Sun W M, Zong H S and Ping J L 2006 Phys. Lett. B 639 248 [30] Halasz M A, Jackson A D, Shrock R E, Stephanov M A andVerbaarschot J J M 1998 Phys. Rev. D 58 096007