摘要We present a noncommutative version of the Ablowitz--Kaup--Newell--Segur (AKNS) equation hierarchy, which possesses the zero curvature representation. Furthermore, we derive the noncommutative AKNS equation from the noncommutative (anti-)self-dual Yang--Mills equation by reduction, which is an evidence for the noncommutative Ward conjecture. Finally, the integrable coupling system of the noncommutative AKNS equation hierarchy is constructed by using the Kronecker product.
Abstract:We present a noncommutative version of the Ablowitz--Kaup--Newell--Segur (AKNS) equation hierarchy, which possesses the zero curvature representation. Furthermore, we derive the noncommutative AKNS equation from the noncommutative (anti-)self-dual Yang--Mills equation by reduction, which is an evidence for the noncommutative Ward conjecture. Finally, the integrable coupling system of the noncommutative AKNS equation hierarchy is constructed by using the Kronecker product.
[1] Douglas M R and Nekrasov N A 2002 Rev. Mod. Phys.73 977 [2]Ito K 2004 Bull. Phys. Soc. Jpn. 59 856 (inJapanese) [3] Sen A hep-th/0410103 [4]Hamanaka M 2005 J. Math. Phys. 46 052701 [5]Minwalla S, Raamsdonk M V and Seiberg N 2000 J. HighEnergy Phys. 02 020 [6]Seiberg N and Witten E 1999 J. High Energy Phys. 09 032 [7]Takasaki K 2001 J. Geom. Phys. 37 291 [8] Moyal J E 1949 Proc. Camb. Phil. Soc. 45 99 [9]Wang N and Wadati M 2003 J. Phys. Soc. Jpn. 721366 [10]Shigechi K, Wang N and Wadati M 2005 Nucl. Phys. B 706 518 [11]Grisaru M T and Penati S 2003 Nucl. Phys. B655 250 [12] Legare M 2002 J. Phys. A 35(26) 5489 [13] Ward R S 1986 Multidimensional Integrable SystemsLecture Notes in Physics (Berlin: Springer) 280 106 [14]Lechtenfeld O and Popov A D 2001 Phys. Lett. B 523 178 [15]Hamanaka M and Toda K 2002 Phys. Lett. A 316 77 [16]Fuchssteiner B 1993 Coupling of Completely IntegrableSystems (Dordrecht: Kluwer) p 125 [17] Guo F K and Zhang Y F 2005 J. Phys. A 388537 [18]Ma W X 2003 Phys. Lett. A 316 72 [19]Zhang Y F and Zhang H Q 2002 J. Math. Phys. 43466 [20]Yu F J, Xia T C and Zhang H Q 2006 Chaos, Solitonsand Fractals 27 1036 [21]Yu F J and Zhang H Q 2006 Commun. Theor. Phys. 415 587 [22]Tu G Z 1989 J Math Phys. 33 330