Generation of GHZ States via Deterministic Entanglement Concentration
JIN Rui-Bo1,2, CHEN Li-Bing2, WANG Fa-Qiang1, LIANG Rui-Sheng1
1Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 5100062Department of Photoelectron and Physics, Foshan University, Foshan 528000
Generation of GHZ States via Deterministic Entanglement Concentration
JIN Rui-Bo1,2;CHEN Li-Bing2;WANG Fa-Qiang1;LIANG Rui-Sheng1
1Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 5100062Department of Photoelectron and Physics, Foshan University, Foshan 528000
摘要We present the generation of six-particle Greenberger--Horne--Zeilinger (GHZ) states via deterministic entanglement concentration and generalize the scheme to the case of 2N particles. We show that arbitrary 2N-particle GHZ states can be obtained with certain probability via entanglement concentration. This may provide a new perspective for the preparation of multi-particle GHZ states. This study is also an exploration on the theory of deterministic entanglement concentration.
Abstract:We present the generation of six-particle Greenberger--Horne--Zeilinger (GHZ) states via deterministic entanglement concentration and generalize the scheme to the case of 2N particles. We show that arbitrary 2N-particle GHZ states can be obtained with certain probability via entanglement concentration. This may provide a new perspective for the preparation of multi-particle GHZ states. This study is also an exploration on the theory of deterministic entanglement concentration.
(Quantum computation architectures and implementations)
引用本文:
JIN Rui-Bo;CHEN Li-Bing;WANG Fa-Qiang;LIANG Rui-Sheng. Generation of GHZ States via Deterministic Entanglement Concentration[J]. 中国物理快报, 2008, 25(2): 386-389.
JIN Rui-Bo, CHEN Li-Bing, WANG Fa-Qiang, LIANG Rui-Sheng. Generation of GHZ States via Deterministic Entanglement Concentration. Chin. Phys. Lett., 2008, 25(2): 386-389.
[1] Greenberger D M et al 1990 Am. J. Phys. 581131 [2] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96060502 [3] Schmid C et al 2005 Phys. Rev. Lett. 95230505 [4] Schon C et al 2005 Phys. Rev. Lett. 95 110503 [5] Wei L F et al 2006 Phys. Rev. Lett. 96 246803 [6] Qian J et al 2007 Phys. Rev. A 75 032309 [7] Su X L et al 2007 Phys. Rev. Lett. 98 070502 [8] Zhao Z et al 2004 Nature 430 54 [9] Gu Y J et al 2006 Phys. Rev. A 73 022321 [10] Jin R B, Chen L B and Wang F Q et al 2007 Chin.Phys. Lett. 24 1799 [11] Bennett C H, Bernstein H J, Popescu S and Schumacher B1996 Phys. Rev. A 53 2046 [12] Morikoshi F 2000 Phys. Rev. Lett. 84 3189 [13] Morikoshi F and Koashi M 2001 Phys. Rev. A 64022316 [14] Bhatia R 1997 Matrix Analysis of Graduate Texts inMathematics (New York: Springer) vol 169 [15] Jensen J G and Schack R 2001 Phys. Rev. A 63062303 [16] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)