摘要Physical properties of polycrystalline ferroelectrics including the contributions of the fixed dipolar defects and the average grain size in the Potts--Ising model are simulated by using the Monte Carlo method. Domain pattern, hysteresis loop and switching current of the polarization reversal process are obtained. Two processes are considered in our simulation. In the first one, the grain texture of ferroelectric ceramics are produced from the Potts model, and then the Ising model is implemented in the obtained polycrystalline texture to produce the domain pattern, hysteresis loop and switching current. It is concluded that the defect has the ability to decrease the remnant polarization Pr as well as the coercive field Ec. The back switching is obviously observed after the electric field is off, and it shows some variation after introducing the fixed dipolar defect. Meanwhile, the spike of the switching current is found to lower with the increasing defect concentration and the decreasing average grain size.
Abstract:Physical properties of polycrystalline ferroelectrics including the contributions of the fixed dipolar defects and the average grain size in the Potts--Ising model are simulated by using the Monte Carlo method. Domain pattern, hysteresis loop and switching current of the polarization reversal process are obtained. Two processes are considered in our simulation. In the first one, the grain texture of ferroelectric ceramics are produced from the Potts model, and then the Ising model is implemented in the obtained polycrystalline texture to produce the domain pattern, hysteresis loop and switching current. It is concluded that the defect has the ability to decrease the remnant polarization Pr as well as the coercive field Ec. The back switching is obviously observed after the electric field is off, and it shows some variation after introducing the fixed dipolar defect. Meanwhile, the spike of the switching current is found to lower with the increasing defect concentration and the decreasing average grain size.
ZHANG Yan-Fei;WANG Chun-Lei;ZHAO Ming-Lei;LI Ji-Chao;ZHANG Rui-Zhi;LIU Jian;MEI Liang-Mo. Ferroelectric Properties of Polycrystalline Ceramics with Dipolar Defect Simulated from the Potts--Ising Model[J]. 中国物理快报, 2008, 25(4): 1442-1445.
ZHANG Yan-Fei, WANG Chun-Lei, ZHAO Ming-Lei, LI Ji-Chao, ZHANG Rui-Zhi, LIU Jian, MEI Liang-Mo. Ferroelectric Properties of Polycrystalline Ceramics with Dipolar Defect Simulated from the Potts--Ising Model. Chin. Phys. Lett., 2008, 25(4): 1442-1445.
[1] Poykko S and Chadi D J 1999 Phys. Rev. Lett. 83 1231 [2] Park C H and Chadi D J 1998 Phys. Rev. B 57 R13961 [3] Picinin A et al %, Lente M H, Eiras J A and Rino J P2004 Phys. Rev. B 69 064117 [4] Lente M H and Eiras J A 2002 J. Appl. Phys. 92 2112 [5] Lupascu D C, Shur V Y and Shur A G 2002 Appl. Phys. Lett. 80 2359 [6] Zeng L B et al %, Zheng Z Q, Yang J W, Li K W, Jiang H, Chen X S, Wang A%Y, Xie J P 0022 Lente and J. A. Eiras,and Ming H2005 Chin. Phys. Lett. 22 80 [7] Kim J S and Kim I W 2006 J. Electroceram. 16 373 [8] Liu J S et al %, Zhang S R, Chen F G, Yang C T and Zhou X H2004 Phys. Lett. A 321 199 [9] Ahluwalia R and Cao W 2000 Phys. Rev. B 63 012103 [10] Wu Y Z, Yao D L and Li Z Y 2002 Solid State Commun. 122 395 [11] Schorn P J, Bottger U and Waser R 2005 Appl. Phys.Lett. 87 242902 [12] Ishibashi Y and Takagi Y 1971 J. Phys. Soc. Jpn. 31506 [13] Du X F and Chen I W 1998 Appl. Phys. Lett. 72 1923 [14] Chen I W and Wang Y 1999 Appl. Phys. Lett. 75 4186 [15] Jung D J et al %, Dawber M, Scott J F, Sinnamon L J and Gregg J M2002 Integr. Ferroelectr. 48 59 [16] Jung D J, Kim K and Scott J F 2005 J. Phys.: Condens.Matter 17 4843 [17] Mehnert K and Klimanek P 1997 Comput. Mater. Sci. 9261 [18] Mehnert K. and Klimanek P. 1996 Scipta Metall. 35 699 [19] Hassold G N et al %, Dreitlein J F, Beale P D and Scott J F1986 Phys. Rev. B 33 3581 [20] Srolovitz D J and Scott J F 1986 Phys. Rev. B 34 1815 [21] Duiker H M et al %, Beale P D, Scott J F, Paz de Araujo C A, Melnick B M,%Cuchiaro J D and McMillan L D1990 J. Appl. Phys. 68 5783 [22] Potter B G et al %, Jr., Tikare V and B A Tuttle2000 J. Appl. Phys. 87 4415 [23] Li K T and. Lo V C 2005 J. Appl. Phys. 97 034107 [24] Su C C et al %, Vugmeister B and Khachaturyan A G2001 J. Appl. Phys. 90 6345 [25] Li K T and Lo V C 2004 Solid State Commun. 132 49 [26] Wu Z Q et al %, Duan W H, Wang Y, Gu B L and Zhang X W2003 Phys. Rev. B 67 052101 [27] Wang Y et al %, Liu Z R, Helen L. W. CHAN and Chung L C2003 Jpn. J. Appl. Phys. 42 515 [28] Wu F Y 1982 Rev. Mod. Phys. 54 235 [29] Paramdeep S S et al %, Gary S G, Michael P A and David J S1983 Phys. Rev. Lett. 50 263 [30] Baudry L 1999 J. Appl. Phys. 86 1096 [31] Noguchi Y J et al %, Masaru M, Kenichi O and Takashi K2004 J. Appl. Phys. 95 4261 [32] Matyjaseka K and Rogowski R Z 2006 J. Appl. Phys. 99 074107