1Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania (GO), Brazil 2Nucleo de Pesquisas em Fisica, Universidade Catolica de Goia s, 74.605-220, Goiania (GO), Brazil.
Truncated States Obtained by Iteration
W. B. Cardoso1;N. G. de Almeida2
1Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania (GO), Brazil 2Nucleo de Pesquisas em Fisica, Universidade Catolica de Goia s, 74.605-220, Goiania (GO), Brazil.
摘要We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.
Abstract:We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
引用本文:
W. B. Cardoso;N. G. de Almeida. Truncated States Obtained by Iteration[J]. 中国物理快报, 2008, 25(2): 517-520.
W. B. Cardoso, N. G. de Almeida. Truncated States Obtained by Iteration. Chin. Phys. Lett., 2008, 25(2): 517-520.
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [2] Kane B E 1998 Nature 393 143 [3] Pellizzari T 1997 Phys. Rev. Lett. 79% 5242 [4] Gisin N et al. 2002 Rev. Mod. Phys. 74145 [5] Bjork G and Sanchez-Soto L L 2001 Phys. Rev.Lett. 86 4516 Mutzel M et al 2002 Phys. Rev. Lett. 88083601 [6] Zurek W H 1991 Phys. Today 44 36 Gerry C C and Knight P L 1997 Am. J. Phys. 65 964 Varcoe B T H et al 2000 Nature 403 743 [7] Raimond J M et al 1996 Phys. Rev. Lett. 791964; Osnaghi S et al 2001 Phys. Rev. Lett. 87 37902 [8] Brune M et al 1996 Phys. Rev. Lett. 77 4887 [9] Bennett C H and Vicenzo D P 2000 Nature 404247 Ekert A K 1991 Phys. Rev. Lett. 67 661 [10] Narozhny N B et al 1981 Phys. Rev. A 23 236 Rempe G et al 1987 Phys. Rev. Lett. 58 353 [11] Poyatos J F et al 1996 Phys. Rev. Lett. 774728 [12] Barnett S M and Pegg D T 1996 Phys. Rev. Lett. 76 4148 [13] Serra R M et al 2000 Phys. Rev. A 62 43810 [14] Devaney R L 1989 An Introduction to ChaoticDynamical Systems 2nd edn (Redwood City, CA: Addison-Wesley) [15] Ohya M 1998 Int. J. Theor. Phys. 37 495 [16] Dodonov V V 2002 J. Opt. B 4 R1 [17] Mandel L and Wolf E 1995 Optical Coherence andQuantum Optics (Cambridge: Cambridge University Press) [18] Walls D F and Milburn G J 1994 Quantum Optics(Berlin: Springer) [19] Serra R M et al 2001 Phys. Rev. A 63 053803 [20] Vogel k 1993 Phys. Rev. Lett. 71 1816 Moussa M H Y and Baseia B 1998 Phys. Lett. A 238223 [21] Dakna M et al 1999 Phys. Rev. A 59 1658 [22] Cardoso W B and de Almeida N G 2006 Phys. Lett. A 356 104