Pressure and Temperature Induced Phase Transition of ZnS from First-Principles Calculations
HU Cui-E1,2, SUN Li-Li1, ZENG Zhao-Yi1, CHEN Xiang-Rong 1,2,3
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 6100652College of Physical Science and Technology, Sichuan University, Chengdu 6100643International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016
Pressure and Temperature Induced Phase Transition of ZnS from First-Principles Calculations
HU Cui-E1,2;SUN Li-Li1;ZENG Zhao-Yi1;CHEN Xiang-Rong 1,2,3
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 6100652College of Physical Science and Technology, Sichuan University, Chengdu 6100643International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016
摘要The pressure induced phase transition of ZnS from the wurtzite (WZ) and the zincblende (ZB) structures to the rocksalt (RS) structure and the temperature induced phase transition from the ZB structure to the WZ structure are investigated by ab initio plane-wave pseudopotential density-functional theory (DFT), together with the quasi-harmonic Debye model. It is found that the zero-temperature transition pressures from the WZ-ZnS and the ZB-ZnS to the RS-ZnS are 17.20 and 17.37GPa, respectively. The zero-pressure transition temperature from the ZB-ZnS to the WZ-ZnS is 1199K. All these results are consistent with the available experimental data. Moreover, the dependences of the normalized primitive cell volume V/V0 on pressure and thermal expansion coefficient α on temperature are also obtained successfully.
Abstract:The pressure induced phase transition of ZnS from the wurtzite (WZ) and the zincblende (ZB) structures to the rocksalt (RS) structure and the temperature induced phase transition from the ZB structure to the WZ structure are investigated by ab initio plane-wave pseudopotential density-functional theory (DFT), together with the quasi-harmonic Debye model. It is found that the zero-temperature transition pressures from the WZ-ZnS and the ZB-ZnS to the RS-ZnS are 17.20 and 17.37GPa, respectively. The zero-pressure transition temperature from the ZB-ZnS to the WZ-ZnS is 1199K. All these results are consistent with the available experimental data. Moreover, the dependences of the normalized primitive cell volume V/V0 on pressure and thermal expansion coefficient α on temperature are also obtained successfully.
HU Cui-E;SUN Li-Li;ZENG Zhao-Yi;CHEN Xiang-Rong;. Pressure and Temperature Induced Phase Transition of ZnS from First-Principles Calculations[J]. 中国物理快报, 2008, 25(2): 675-678.
HU Cui-E, SUN Li-Li, ZENG Zhao-Yi, CHEN Xiang-Rong,. Pressure and Temperature Induced Phase Transition of ZnS from First-Principles Calculations. Chin. Phys. Lett., 2008, 25(2): 675-678.
[1] Velumani S and Ascencio J A 2003 Appl. Phys. A: Mater. Sci.Process. 72 236 [2] Li Q and Wang C 2003 Appl. Phys. Lett. 83 359 [3] Fitzer N et al %, Kuligk A, Redmer R, Stadele M, Goodnick S M and Schattke%W2003 Phys. Rev. B 67 201201 [4] Zheng J et al %, Zhang G, Guo Y, Wang X, Chen W, Zhang X, and Hua Y2006 Chin. Phys. Lett. 23 3097 [5] Zhou X T et al %, Kim P S G, Sham T K and Lee S T2005 J. Appl. Phys. 98 024312 [6] Luo Y Y, Duan G T and Li G H 2007 Appl. Phys. Lett. 90201911 [7] Geng B Y et al %, Liu X W, Ma J Z, Du Q B and Zhang L D2007 Appl. Phys. Lett. 90 183106 [8] Xue L A and Raj R, 1990 J. Mater. Sci. Lett. 9 818 [9] Catti M 2002 Phys. Rev. B 65 224115 [10] Ves S et al %, Schwarz U, Christensen N E, Syassen K and Cardona M1990 Phys. Rev. B 42 9113 [11] Pan Y et al %, Qu S, Gao C, Han Y, Luo J, Cui Q, Liu J and Zou G2004 Chin. Phys. Lett. 21 67 [12] Jaffe J E, Pandey R and Seel M J 1993 Phys. Rev. B 476299 [13] Miao M S and Lambrecht W R L 2005 Phys. Rev. Lett. 94225501 [14] Chen X R, Li X F, Cai L C and Zhu J 2006 Solid State Commun. 139 246 [15] Lide D R 1995 CRC Handbook of Chemistry and Physics75th edn (Boca Raton, FL: CRC) [16] Ding Y, Wang X D and Wang Z L 2004 Chem. Phys. Lett. 398 32 [17] Payne M C et al %, Teter M P, Allen D C, Arias T A and Joannopoulos J D1992 Rev. Mod . Phys. 64 1045 [18] Milman V et al %, Winkler B, White J A, Packard C J, Payne M C,%Akhmatskaya E V and Nobes R H,2000 Int. J. Quantum Chem. 77 895 [19] Blanco M A, Francisco E and Luana V 2004 Comput. Phys.Commun. 158 57 [20] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [21] Vanderbilt D 1990 Phys. Rev. B 41 7892 [22] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413 [23] Perdew J P and Wang Y 1992 Phys. Rev. B. 45 13244 [24] Birch F 1947 Phys. Rev. 71 809 [25] Wang S Q 2006 Appl. Phys. Lett. 88 061902 [26] Xu Y N and Ching W Y 1993 Phys. Rev. B 48 4335 [27] Kisi E H and Elcombe M M 1989 Acta Cryst. C 45 1867 [28] Chang E and Barsch G R 1973 J. Phys. Chem. Solids 341543 [29] Ali Sahraoui F et al %, Zerroug S, Louail L and Maouche D2007 Mater. Lett. 61 1978 [30] Nazzal A and Qteish A 1996 Phys. Rev. B 53 8262 [31] Casali R A and Christense N E 1998 Solid State Commun. 108 793 [32] Pan Y et al %, Qu S, Dong S, Cui Q, Zhang W, Liu X, Liu J, Liu B, Gao Cand Zou G2002 J. Phys.: Condens. Matter 14 10487 [33] Shionoya S 1999 Phosphor Handbook ed Shionoya S andWilliam M (Boca Raton, FL: CRC) vol 17