摘要The migration of a polaron at polymer/polymer interface is believed to be of fundamental importance for the transport and light-emitting properties of conjugated polymer-based light emitting diodes. Based on the one-dimensional tight-binding Su--Schrieffer--Heeger (SSH) model, we have investigated polaron dynamics in a one-dimensional polymer/polymer system by using a nonadiabatic evolution method. In particular, we focus on how a polaron migrates through the conjugated polymer/polymer interface in the presence of external electric field. The results show that the migration of polaron at the interface depends sensitively on the hopping integrals, the potential barrier induced by the energy mismatch, and the strength of applied electric field which increases the polaron kinetic energy.
Abstract:The migration of a polaron at polymer/polymer interface is believed to be of fundamental importance for the transport and light-emitting properties of conjugated polymer-based light emitting diodes. Based on the one-dimensional tight-binding Su--Schrieffer--Heeger (SSH) model, we have investigated polaron dynamics in a one-dimensional polymer/polymer system by using a nonadiabatic evolution method. In particular, we focus on how a polaron migrates through the conjugated polymer/polymer interface in the presence of external electric field. The results show that the migration of polaron at the interface depends sensitively on the hopping integrals, the potential barrier induced by the energy mismatch, and the strength of applied electric field which increases the polaron kinetic energy.
DI Bing;MENG Yan;AN Zhong;LI You-Cheng. Dynamics of Polaron at Polymer/Polymer Interface[J]. 中国物理快报, 2008, 25(2): 679-682.
DI Bing, MENG Yan, AN Zhong, LI You-Cheng. Dynamics of Polaron at Polymer/Polymer Interface. Chin. Phys. Lett., 2008, 25(2): 679-682.
[1] Burroughes J H et al 1990 Nature 347 539 [2] Braun D and Heeger A J 1991 Appl. Phys. Lett. 58 1982 [3] Greenham N C et al 1993 Nature 365 628 [4] Greenham N C et al 1996 Phys. Rev. B 53 13528 [5] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev.Lett. 42 1698 [6] Brazovskii S A and Kirova N N 1981 Sov. Phys. JETPLett. 33 4 [7] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781 [8] Morteani A C et al 2003 Adv. Mater. 15 1708 [9] Cao Y, Parker Ian D, Yu G, Zhang C and Heeger A J 1999 Nature 397 414 [10] Wu C Q, Qiu Y, An Z and Nasu K 2003 Phys. Rev. B 68 125416 [11] Yan Y H, An Z and Wu C Q 2005 Eur. Phys. J. B 48 501 [12] Su W P and Schrieffer J R 1980 Proc. Natl. Acad.Sci. USA 77 5626 [13] Di B, An Z, Li Y C and Wu C Q 2007 Euro. Phys.Lett. 79 17002 [14] Liu X J, Gao K, Fu J Y, Li Y, Wei J H and Xie S J 2006 Phys. Rev. B 75 172301 [15] Johansson \AA \, and Stafstr{\"{om S 2001 Phys.Rev. Lett. 86 3602 [16] Liu X J, Gao K, Li Y, Fu J Y, Wei J H and Xie S J 2007 Synth. Met. 157 380 [17] An Z and Wu C Q 2004 Eur. Phys. J. B 42 467 [18] An Z, Wu C Q and Sun X 2004 Phys. Rev. Lett. 93 216407 [19] Brankin R W, Gladwell I and Shampine L F RKSUITE: Software for ODE IVPS (www.netlib.org)