摘要We investigate one-dimensional dielectric photonic crystal and optical Tamm modes formed by superposition of two band gaps and find that this kind of mode can be explained by the single negative materials tunnelling effect. A finite-size dielectric photonic band gap can mimic one kind of effective single negative material and this property sensitively depends on the frequency location in stop-band regions and surface termination and so on. The effective impedance match and effective phase match give the precise position of the optical Tamm mode. Complete transparency via tunnelling is achieved by two opaque media and demonstrates the validity of our approach.
Abstract:We investigate one-dimensional dielectric photonic crystal and optical Tamm modes formed by superposition of two band gaps and find that this kind of mode can be explained by the single negative materials tunnelling effect. A finite-size dielectric photonic band gap can mimic one kind of effective single negative material and this property sensitively depends on the frequency location in stop-band regions and surface termination and so on. The effective impedance match and effective phase match give the precise position of the optical Tamm mode. Complete transparency via tunnelling is achieved by two opaque media and demonstrates the validity of our approach.
[1] Joannopoulos J D, Meanade R D and Winn J N 1995 Photonic Crystals (Princeton, NJ: Princeton University Press) Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin:Springer) Inoue K and Ohtaka K 2004 Photonic Crystals (New York: Springer) [2] Veselago V S 1968 Sov. Phys. Usp. 10 509 [3] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [4] Fredkin D R and Ron A 2002 Appl. Phys. Lett. 81 1753 [5] Al A and Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558 [6] Guan G et al %, Jiang H, Li H, Zhang Y, Chen H and Zhu S2006 Appl. Phys. Lett. 88 211112 [7] Kavokin A V, Shelykh I A and Malpuech G 2005 Phys. Rev. B 72 233102 [8] Vinogradov A P et al %, Dorofeenko A V, Erokhin S G, Inoue%M, Lisyansky A A, Merzlikin A M and Granovsky A B2006 Phys. Rev. B 74 045128 [9] Kavokin A V, Shelykh I A and Malpuech G 2005 Appl. Phys.Lett. 87 261105 [10] O'Brien S and Pendry J B 2002 J. Phys. Condens. Matter 14 4035 [11] Didier F and Guy B 2005 Phys. Rev. Lett. 94 183902 [12] Smith D R et al %, Schultz S, Marko\v s P and Soukoulis C M2002 Phys. Rev. B 65 195104 [13] Chen X D et al %, Grzegorczyk Tomasz M, Wu B I, Joe P Jr and%Kong J A2004 Phys. Rev. E 70 016608 [14] Decoopman T, Tayeb G, Enoch S, Maystre D and Gralak B 2006 Phys. Rev. Lett. 97 073905 [15] Koschny T, Marko\v s P, Smith D R and Soukoulis C M 2003 Phys. Rev. E 68 065602(R) Depine R A and Lakhtakia A 2004 Phys. Rev. E 70 048601 Efros A L 2004 Phys. Rev. E 70 048602 Koschny T, Marko\v s P, Smith D R and Soukoulis C M 2004 Phys. Rev. E 70 048603 [16] Marti\'\i nez A and Marti\'\i J 2005 Phys. Rev. B 71 235115