Motion of Test Particle in Generalized Schwarzschild Geometry
ZHAI Xiang-hua1 , YUAN Ning-yi1 , LI Xin-zhou2
1 Department of Physics, 2 East China Institute for Theoretical Physics, East China University of Science and Technology, Shanghai 200237
Motion of Test Particle in Generalized Schwarzschild Geometry
ZHAI Xiang-hua1 ;YUAN Ning-yi1 ;LI Xin-zhou2
1 Department of Physics, 2 East China Institute for Theoretical Physics, East China University of Science and Technology, Shanghai 200237
关键词 :
04.20.-q ,
02.40.Ky ,
98.90.+s
Abstract : By the Hamilton-Jacobi formalism, the features of orbits of a test particle moving in generalized Schwarzschild geometries with the parameter 0 < λ ≤ 1 are studied, where the intensity of λ corresponds to the contribution of massless scalar field. In special case λ= 1, it is reduced to the Schwarzschild metric. It is found that λ= 1/2 is a critical point, when 1/2 ≤ λ < 1 the qualitative features are similar to Schwarzschild geometry whereas the case of 0 < λ < 1/2 is different from the case of λ= 1.
Key words :
04.20.-q
02.40.Ky
98.90.+s
出版日期: 1999-05-01
:
04.20.-q
(Classical general relativity)
02.40.Ky
(Riemannian geometries)
98.90.+s
(Other topics on stellar systems; interstellar medium; galactic and extragalactic objects and systems; the Universe)
引用本文:
ZHAI Xiang-hua;YUAN Ning-yi;LI Xin-zhou. Motion of Test Particle in Generalized Schwarzschild Geometry[J]. 中国物理快报, 1999, 16(5): 321-323.
ZHAI Xiang-hua, YUAN Ning-yi, LI Xin-zhou. Motion of Test Particle in Generalized Schwarzschild Geometry. Chin. Phys. Lett., 1999, 16(5): 321-323.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y1999/V16/I5/321
[1]
DENG Xue-Mei;WU Ya-Bo;ZHAO Guo-Ming. A Parametric Dynamic Model of Dark Energy [J]. 中国物理快报, 2006, 23(6): 1655-1658.
[2]
Tian Gui-Hua. Rediscussion of the Stability Problem of the Schwarzschild Black Hole [J]. 中国物理快报, 2006, 23(4): 783-785.
[3]
SHAO Ying;GUI Yuan-Xing;WANG Wei
. Scalar Field Model of Dark Energy In the Double Complex Symmetric Gravitational Theory [J]. 中国物理快报, 2006, 23(1): 7-9.
[4]
T. D. Lee. A Possible Origin of Dark Energy [J]. 中国物理快报, 2004, 21(6): 1187-1188.
[5]
YANG Rong-Jia;JING Ji-Liang. Newtonian Forms for Dilaton Spacetimes in String Theory [J]. 中国物理快报, 2004, 21(3): 580-583.
[6]
LI Xin-Zhou;LIU Dao-Jun;HAO Jian-Gang. A New Exactly Solvable Inflation Model and Its Power Spectrum
[J]. 中国物理快报, 2003, 20(2): 192-194.
[7]
SHAO Liang;H. NODA;SHAO Dan;SHAO Chang-gui. Demonstration of the Symmetry Properties of Gravitational Metric Fields [J]. 中国物理快报, 2002, 19(4): 470-473.
[8]
YANG Guo-Hong;JIANG Ying;DUAN Yi-Shi. Topological Quantization of k-Dimensional Topological Defects and Motion Equations [J]. 中国物理快报, 2001, 18(5): 631-633.
[9]
LI Xiang; ZHAO Zheng. Entropy of Vaidya-deSitter Spacetime [J]. 中国物理快报, 2001, 18(3): 463-465.
[10]
WU Ya-Bo;LI Jiu-Li. Generalization of the Hilbert-Palatini Action in Four-Dimensional Gravity [J]. 中国物理快报, 2001, 18(3): 328-330.
[11]
CHEN Guang. Gravitation Without Singularity [J]. 中国物理快报, 2000, 17(2): 82-84.
[12]
ZHAO Zheng;ZHU Jian-yang;LIU Wen-biao. Entropy of Kerr-Newman Black Hole Continuously Goes to Zero when the Hole Changes from Nonextreme Case to Extreme Case [J]. 中国物理快报, 1999, 16(9): 698-670.
[13]
DUAN Yi-shi;JIANG Ying;YANG Guo-hong. Evolution of the Topological Linear Defects [J]. 中国物理快报, 1999, 16(3): 157-159.
[14]
DUAN Yi-shi;JIANG Ying;YANG Guo-hong. Topological Quantization of Linear Defects [J]. 中国物理快报, 1998, 15(11): 781-783.
[15]
ZHAO Zheng. Thermodynamics and Time-Like Singularity [J]. 中国物理快报, 1997, 14(5): 325-327.