We explore the effects of atomic memory on quantum correlations of two-mode light fields from four-wave mixing. A three-level atomic system in Λ configuration is considered, in which the atomic relaxation times are comparable to or longer than the cavity relaxation times and thus there exists the atomic memory. The quantum correlation spectrum in the output is calculated without the adiabatic elimination of atomic variables. It is shown that the continuous variable entanglement is enhanced over a wide range of the normalized detuning in the intermediate and bad cavity cases compared with the good cavity case. In some situations more significant enhancement occurs at sidebands.
We explore the effects of atomic memory on quantum correlations of two-mode light fields from four-wave mixing. A three-level atomic system in Λ configuration is considered, in which the atomic relaxation times are comparable to or longer than the cavity relaxation times and thus there exists the atomic memory. The quantum correlation spectrum in the output is calculated without the adiabatic elimination of atomic variables. It is shown that the continuous variable entanglement is enhanced over a wide range of the normalized detuning in the intermediate and bad cavity cases compared with the good cavity case. In some situations more significant enhancement occurs at sidebands.
(Coherent control of atomic interactions with photons)
引用本文:
ZHU Yu-Zhu;HU Xiang-Ming;WANG Fei;LI Jing-Yan. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects[J]. 中国物理快报, 2010, 27(4): 44210-044210.
ZHU Yu-Zhu, HU Xiang-Ming, WANG Fei, LI Jing-Yan. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects. Chin. Phys. Lett., 2010, 27(4): 44210-044210.
[1] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1986 Phys. Rev. Lett . 55 2409 Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1986 Phys. Rev. Lett. 56 {788} [2] Schumaker B L, Perlmutter S H, Shelby R M and Levenson M D 1987 Phys. Rev. Lett. 58 357 [3] Pielawa S, Morigi G, Vitali D and Davidovich L 2007 Phys. Rev. Lett. 98 240401 [4] Ikram M, Li G X and Zubairy M S 2007 Phys. Rev. A 76 042317 [5] Wu Y and Deng L 2004 Opt. Lett. 29 1144 [6] Cheng G L, Hu X M, Zhong W X and Li Q 2008 Phys. Rev. A 78 033811 [7] Li J Y and Hu X M 2009 J. Phys . B 42 055501 [8] Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903 [9] Pereira S F, Ou Z Y and Kimble H J 2000 Phys. Rev. A 62 042311 [10] Zhang Y, Wang H, Li X Y, Jing J T, Xie C D and Peng K C 2000 Phys. Rev. A 62 023813 [11] Boyd R W, Raymer M G, Narum P and Harter D J 1981 Phys. Rev. A 24 411 [12] Agarwal G S and Boyd R W 1988 Phys. Rev . A 38 4019 [13] Reid M D, Walls D F and Dalton D J 1985 Phys. Rev. Lett . 55 1288 [14] Reid M D 1988 Phys. Rev . A 37 4792 [15] Paul A E, Lindberg M, An S and Sargent Ⅲ M 1990 Phys. Rev . A 42 1725 [16] Gardiner C W and Zoller P 2000 Quantum Noise 2nd edn (Berlin: Springer) [17] Scully M O, Sussmann G and Benkert C 1988 Phys. Rev. Lett. 60 1014 [18] Davidovich L 1996 Rev. Mod. Phys. 68 127 [19] Arimondo E 1996 Progress in Optics ed Wolf E (Amsterdam: Elsevier) vol 35 p 257 [20] Harris S E 1997 Phys. Today 50 (7) 36 [21] Zhang J X, Dong R F, Chang H, Xie C D, Peng K C and Xiao M 2001 Chin. Phys. Lett. 18 1586 [22] Xiao F, Guo R M, Chen S, Zhang Y, Li L M and Chen X Z 2003 Chin. Phys. Lett. 20 1257 [23] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University) [24] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interactions (New York: Wiley) [25] Drummond P D and Gardiner C W 1980 J. Phys . A 13 2353 [26] Drummond P D and Walls D F 1981 Phys. Rev . A 23 2563 [27] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722