Limit Cycles near Stationary Points in the Lorenz System
YANG Shi-Pu, ZHU Ke-Qin, ZHOU Xiao-Zhou
Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Limit Cycles near Stationary Points in the Lorenz System
YANG Shi-Pu;ZHU Ke-Qin;ZHOU Xiao-Zhou
Department of Engineering Mechanics, Tsinghua University, Beijing 100084
关键词 :
05.45.Jn ,
05.45.Pq
Abstract : The limit cycles in the Lorenz system near the stationary points are analysed numerically. A plane in phase space of the linear Lorenz system is used to locate suitable initial points of trajectories near the limit cycles. The numerical results show a stable and an unstable limit cycle near the stationary point. The stable limit cycle is smaller than the unstable one and has not been previously reported in the literature. In addition, all the limit cycles in the Lorenz system are theoretically proven not to be planar.
Key words :
05.45.Jn
05.45.Pq
出版日期: 2005-11-01
:
05.45.Jn
(High-dimensional chaos)
05.45.Pq
(Numerical simulations of chaotic systems)
引用本文:
YANG Shi-Pu;ZHU Ke-Qin;ZHOU Xiao-Zhou. Limit Cycles near Stationary Points in the Lorenz System[J]. 中国物理快报, 2005, 22(11): 2780-2783.
YANG Shi-Pu, ZHU Ke-Qin, ZHOU Xiao-Zhou. Limit Cycles near Stationary Points in the Lorenz System. Chin. Phys. Lett., 2005, 22(11): 2780-2783.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2005/V22/I11/2780
[1]
FENG Cun-Fang;ZHANG Yan; WANG Ying-Hai. Different Types of Synchronization in Time-Delayed Systems [J]. 中国物理快报, 2007, 24(1): 50-53.
[2]
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems [J]. 中国物理快报, 2006, 23(6): 1418-1421.
[3]
ZHANG Shan;YANG Shi-Ping;LIU Hu. Targeting of Kolmogorov--Arnold--Moser Orbits by the Bailout Embedding Method in Two Coupled Standard Maps [J]. 中国物理快报, 2006, 23(5): 1114-1117.
[4]
BAI Long;WENG Jia-Qiang;FANG Jin-Qing. Control of Beam Halo-Chaos by Soliton [J]. 中国物理快报, 2005, 22(9): 2180-2182.
[5]
WANG Wen-Ge. Decay Rate of Energy Eigenfunctions in Classically Energetically Inaccessible Regions in more than One Dimensional Configuration Spaces [J]. 中国物理快报, 2005, 22(12): 2991-2993.
[6]
YAN Sen-Lin;. Small-Signal Analysis of Performance Characterization of Chaotic Masking Decoding in Injected Semiconductor Lasers [J]. 中国物理快报, 2005, 22(10): 2504-2507.
[7]
XU Jiang-Feng;MIN Le-Quan;CHEN Guan-Rong. A Chaotic Communication Scheme Based on Generalized Synchronization and Hash Functions [J]. 中国物理快报, 2004, 21(8): 1445-1448.
[8]
CHEN Shao-Ying;WANG Guang-Rui;CHEN Shi-Gang. Measure Synchronization of High-Cycle Islets in Coupled Hamiltonian Systems [J]. 中国物理快报, 2004, 21(11): 2128-2131.
[9]
QI Hong-Ji;JIN Yong-Hao;CHENG Chuan-Fu;HUANG Li-Hua;YI Kui;SHAO Jian-Da. Dynamic Scaling Behaviour in (2+1)-Dimensional Kuramoto-Sivashinsky Model [J]. 中国物理快报, 2003, 20(5): 622-625.
[10]
LIU Zeng-Rong;MAO Jian-Min. Control of Unstable Flows [J]. 中国物理快报, 2003, 20(2): 206-208.
[11]
ZHANG Xiao-Dan;ZHANG Li-Li;MIN Le-Quan. Construction of Generalized Synchronization for a Kind of Array Differential Equations and Applications [J]. 中国物理快报, 2003, 20(12): 2114-2117.
[12]
MA Ke;YANG Chun-Bin;CAI Xu. Local Lyapunov Exponent for the Bak-Sneppen Model [J]. 中国物理快报, 2003, 20(12): 2118-2121.
[13]
CHEN Shi-Hua;LIU Jie;FENG Jian-Wen;LÜJin-Hu. Synchronizing Chaotic Systems in Strict-Feedback Form Using a Single Controller [J]. 中国物理快报, 2002, 19(9): 1257-1259.
[14]
LÜJin-Hu;CHEN Guan-Rong;YU Yong-Guang. Asymptotic Analysis of a Modified Lorenz System
[J]. 中国物理快报, 2002, 19(9): 1260-1263.
[15]
LU Jun-An;TAO Chao-Hai;LÜJin-Hu;LIU Min. Parameter Identification and Tracking of a Unified System
[J]. 中国物理快报, 2002, 19(5): 632-635.