Weyl Representation of the Space-Time of the Vacuum C Metric when m =0
WANG Yong-cheng
Department of Physics, Beijing Normal University, Beijing 100875
Weyl Representation of the Space-Time of the Vacuum C Metric when m =0
WANG Yong-cheng
Department of Physics, Beijing Normal University, Beijing 100875
关键词 :
04.20.-q
Abstract : By using the imaginary Weyl coordinate method, the whole space-time of the vacuum C metric when m = 0 can be represented by the Weyl coordinate system. In addition, a revised transformation relation between Weyl and Minkowski coordinates has been introduced, and the whole space-time obtained by the Minkowski form of the metric can also be represented by Weyl coordinate system.
Key words :
04.20.-q
出版日期: 1996-07-01
:
04.20.-q
(Classical general relativity)
[1]
DENG Xue-Mei;WU Ya-Bo;ZHAO Guo-Ming. A Parametric Dynamic Model of Dark Energy [J]. 中国物理快报, 2006, 23(6): 1655-1658.
[2]
Tian Gui-Hua. Rediscussion of the Stability Problem of the Schwarzschild Black Hole [J]. 中国物理快报, 2006, 23(4): 783-785.
[3]
SHAO Ying;GUI Yuan-Xing;WANG Wei
. Scalar Field Model of Dark Energy In the Double Complex Symmetric Gravitational Theory [J]. 中国物理快报, 2006, 23(1): 7-9.
[4]
YANG Rong-Jia;JING Ji-Liang. Newtonian Forms for Dilaton Spacetimes in String Theory [J]. 中国物理快报, 2004, 21(3): 580-583.
[5]
LI Xin-Zhou;LIU Dao-Jun;HAO Jian-Gang. A New Exactly Solvable Inflation Model and Its Power Spectrum
[J]. 中国物理快报, 2003, 20(2): 192-194.
[6]
SHAO Liang;H. NODA;SHAO Dan;SHAO Chang-gui. Demonstration of the Symmetry Properties of Gravitational Metric Fields [J]. 中国物理快报, 2002, 19(4): 470-473.
[7]
YANG Guo-Hong;JIANG Ying;DUAN Yi-Shi. Topological Quantization of k-Dimensional Topological Defects and Motion Equations [J]. 中国物理快报, 2001, 18(5): 631-633.
[8]
LI Xiang; ZHAO Zheng. Entropy of Vaidya-deSitter Spacetime [J]. 中国物理快报, 2001, 18(3): 463-465.
[9]
CHEN Guang. Gravitation Without Singularity [J]. 中国物理快报, 2000, 17(2): 82-84.
[10]
ZHAO Zheng;ZHU Jian-yang;LIU Wen-biao. Entropy of Kerr-Newman Black Hole Continuously Goes to Zero when the Hole Changes from Nonextreme Case to Extreme Case [J]. 中国物理快报, 1999, 16(9): 698-670.
[11]
ZHAI Xiang-hua;YUAN Ning-yi;LI Xin-zhou. Motion of Test Particle in Generalized Schwarzschild Geometry [J]. 中国物理快报, 1999, 16(5): 321-323.
[12]
DUAN Yi-shi;JIANG Ying;YANG Guo-hong. Evolution of the Topological Linear Defects [J]. 中国物理快报, 1999, 16(3): 157-159.
[13]
DUAN Yi-shi;JIANG Ying;YANG Guo-hong. Topological Quantization of Linear Defects [J]. 中国物理快报, 1998, 15(11): 781-783.
[14]
ZHAO Zheng. Thermodynamics and Time-Like Singularity [J]. 中国物理快报, 1997, 14(5): 325-327.
[15]
WANG Yong-cheng. Metric of the Superposition of a Schwarzschild Black Hole and a Semi-infinite Rod: Vacuum C Metric [J]. 中国物理快报, 1997, 14(12): 881-884.