Abstract: The characteristics of magnetohydrodynamic fast wave propagation in the solar stratified atmosphere are studied by the ray tracing method. The propagation behaviour of the wavefronts is described in detail. A magnetic field incorporating the characteristics field spreading expected in flux tubes is used, which represents the main feature of an active region. Partly ionization is considered beside the stratified solar atmosphere consisting chromosphere, transition region and corona. The study may explain the characteristics in observations of Moreton and extra-ultraviolet image telescope (EIT) waves. The wavefront incurred by the disturbance initialized at the base of the transition region propagates fast initially due to strong magnetic field, and it slows down when arriving beyond the region of flux-tube. Meanwhile, the wave propagates in the corona with a more consistent speed, as seen in the observation of EIT waves. The speeds and propagated characteristics in chromosphere and corona of the wavefronts are in agreement with those observed in Hα Moreton and EIT waves, respectively.
ZHENG Hui-Nan;ZHANG Yuan-Yuan;WANG Shui;WANG Chuan-Bing;LI Yi. Propagation of Fast Magnetoacoustic Waves in Stratified Solar Atmosphere[J]. 中国物理快报, 2006, 23(2): 399-402.
ZHENG Hui-Nan, ZHANG Yuan-Yuan, WANG Shui, WANG Chuan-Bing, LI Yi. Propagation of Fast Magnetoacoustic Waves in Stratified Solar Atmosphere. Chin. Phys. Lett., 2006, 23(2): 399-402.