Homoclinic Bifurcation for Boussinesq Equation with Even Constraint
DAI Zheng-De1,2 , JIANG Mu-Rong2 , DAI Qing-Yun2 , LI Shao-Lin3
1 Department of Information and Computing Science, Guangxi Industrial College, Liuzhou 545005
2 School of Information, Yunnan University, Kunming 650091
3 Department of Mathematics, Honghe College, Mengzi, Yunnan 661100
Homoclinic Bifurcation for Boussinesq Equation with Even Constraint
DAI Zheng-De1,2 ;JIANG Mu-Rong2 ;DAI Qing-Yun2 ;LI Shao-Lin3
1 Department of Information and Computing Science, Guangxi Industrial College, Liuzhou 545005
2 School of Information, Yunnan University, Kunming 650091
3 Department of Mathematics, Honghe College, Mengzi, Yunnan 661100
关键词 :
02.30.Jr ,
47.20.Ky ,
47.90.+a ,
83.60.Wc
Abstract : The exact homoclinic orbits and periodic soliton solution for the Boussinesq equation are shown. The equilibrium solution u0 =-1/6 is a unique bifurcation point. The homoclinic orbits and solitons will be interchanged with the solution varying from one side of -1/6 to the other side. The solution structure can be understood in general.
Key words :
02.30.Jr
47.20.Ky
47.90.+a
83.60.Wc
出版日期: 2006-05-01
:
02.30.Jr
(Partial differential equations)
47.20.Ky
(Nonlinearity, bifurcation, and symmetry breaking)
47.90.+a
(Other topics in fluid dynamics)
83.60.Wc
(Flow instabilities)
引用本文:
DAI Zheng-De;JIANG Mu-Rong;DAI Qing-Yun;LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J]. 中国物理快报, 2006, 23(5): 1065-1067.
DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun, LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint. Chin. Phys. Lett., 2006, 23(5): 1065-1067.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2006/V23/I5/1065
[1]
HU Heng-Chun;ZHU Hai-Dong. New Doubly Periodic Waves of the (2+1)-Dimensional Double Sine-Gordon Equation [J]. 中国物理快报, 2007, 24(1): 1-4.
[2]
CHEN Jian-Qing;GUO Bo-Ling. On Finding Global Smooth Solutions to the Landau--Lifshitz Equation [J]. 中国物理快报, 2006, 23(6): 1359-1360.
[3]
LI Wen-Min;GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. 中国物理快报, 2006, 23(6): 1361-1364.
[4]
MA Dong-Jun;SUN De-Jun;YIN Xie-Yuan. Axisymmetry Breaking to Travelling Waves in the Cylinder with Partially Heated Sidewall [J]. 中国物理快报, 2006, 23(6): 1515-1518.
[5]
TANG Xiao-Yan;HUANG Fei;;LOU Sen-Yue;. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle [J]. 中国物理快报, 2006, 23(4): 887-890.
[6]
ZHANG Shun-Li;; QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed Nonlinear Diffusion--Convection Equations [J]. 中国物理快报, 2006, 23(3): 527-530.
[7]
ZHU Jun-Yi;GENG Xian-Guo. Solution of Gauss--Codazzi Equation with Applications in the Tzitzeica Equation [J]. 中国物理快报, 2006, 23(11): 2885-2887.
[8]
LOU Sen-Yue;LI Yi-Shen;. Exact Solutions of (2+1)-Dimensional Euler Equation Found by Weak Darboux Transformation [J]. 中国物理快报, 2006, 23(10): 2633-2636.
[9]
WU Yong-Qi. Algebro-Geometric Solution to Two New (2+1)-Dimensional Modified Kadomtsev--Petviashvili Equations [J]. 中国物理快报, 2006, 23(10): 2629-2632.
[10]
ZHANG Shun-Li;;WANG Peng-Zhou;QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed General KdV--Burgers Equation [J]. 中国物理快报, 2006, 23(10): 2625-2628.
[11]
HUANG Ling. Rational Solutions in a Coupled Burgers System [J]. 中国物理快报, 2006, 23(1): 4-6.
[12]
DUAN Yi-Shi;ZHANG Xiu-Ming;TIAN Miao. The Branch Process of Skyrmions in the Fractional Quantum Hall Effect [J]. 中国物理快报, 2005, 22(8): 2047-2051.
[13]
CHEN Jin-Bing;ZHU Jun-Yi;GENG Xian-Guo. Darboux Transformations to (2+1)-Dimensional Lattice Systems [J]. 中国物理快报, 2005, 22(8): 1825-1828.
[14]
JI Xue-Feng;ZHOU Zi-Xiang. Asymptotic Behaviour of Solitons with a Double Spectral Parameter for the Bogomolny Equation in (2+1)-Dimensional Anti de Sitter Space [J]. 中国物理快报, 2005, 22(7): 1570-1572.
[15]
ZHANG Shun-Li;LOU Sen-Yue;QU Chang-Zheng. Functional Variable Separation for Generalized (1+2)-Dimensional Nonlinear Diffusion Equations [J]. 中国物理快报, 2005, 22(5): 1029-1032.