Measuring the Wigner Functions of Two-Mode Cavity Fields and Testing the Bell’s Inequalities
ZHANG Zhi-Ming
Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Max-Planck-Institute for Quantum Optics, Hans-Kopfermann-Str.1, D-85748 Garching, Germany
Measuring the Wigner Functions of Two-Mode Cavity Fields and Testing the Bell’s Inequalities
ZHANG Zhi-Ming
Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Max-Planck-Institute for Quantum Optics, Hans-Kopfermann-Str.1, D-85748 Garching, Germany
关键词 :
03.65.Ta ,
03.65.Wj ,
42.50.Dv ,
42.50.Ct
Abstract : We propose a scheme for measuring the Wigner function of a two mode cavity field. The scheme bases on the interaction between the two-mode cavity field and three-level atoms. We find a simple relation between the Wigner function and the atomic population. One can obtain the Wigner function by measuring the atomic population with a micromaser-like experiment and doing a numerical integral. By using the two-mode Wigner function one can obtain the Clauser--Horne combination and test the Bell's inequalities. We test our equations with a two-mode entanglement state and the results are rather good.
Key words :
03.65.Ta
03.65.Wj
42.50.Dv
42.50.Ct
出版日期: 2004-01-01
:
03.65.Ta
(Foundations of quantum mechanics; measurement theory)
03.65.Wj
(State reconstruction, quantum tomography)
42.50.Dv
(Quantum state engineering and measurements)
42.50.Ct
(Quantum description of interaction of light and matter; related experiments)
引用本文:
ZHANG Zhi-Ming. Measuring the Wigner Functions of Two-Mode Cavity Fields and Testing the Bell’s Inequalities[J]. 中国物理快报, 2004, 21(1): 5-8.
ZHANG Zhi-Ming. Measuring the Wigner Functions of Two-Mode Cavity Fields and Testing the Bell’s Inequalities. Chin. Phys. Lett., 2004, 21(1): 5-8.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2004/V21/I1/5
[1]
ZHANG Zhi-Ming;YANG Jian;YU Ya-Fei. A Scheme for Generating Entangled Squeezed States Based on Cavity QED [J]. 中国物理快报, 2007, 24(2): 352-354.
[2]
YANG Wen-Xing. Preparation of Cluster States with Trapped Ions in Thermal Motion [J]. 中国物理快报, 2007, 24(1): 104-107.
[3]
AHMAD Muhammad Ashfaq;ZENG Ran;LIU Shu-Tian. Nonclassical Properties of Superposition of Two Coherent States Shifted in Phase by 3π/2 [J]. 中国物理快报, 2006, 23(9): 2438-2441.
[4]
WANG Jing;ZHANG Xiang-Dong;PEI Shou-Yong;LIU Da-He. Temperature Tuning of Casimir Effect [J]. 中国物理快报, 2006, 23(9): 2372-2375.
[5]
TAN Rong; LI Gao-Xiang. Spontaneous Decay of a Quadrupole between Two Parallel Plates, One or Both Infinitely Permeable [J]. 中国物理快报, 2006, 23(9): 2434-2437.
[6]
ZHENG Shi-Biao. Teleportation of Quantum States through Mixed Entangled Pairs [J]. 中国物理快报, 2006, 23(9): 2356-2359.
[7]
YU Zhao-Xian;LIANG Jiu-Qing;JIAO Zhi-Yong. Quantum Effects of Many Atoms in Spinor Bose--Einstein Condensates [J]. 中国物理快报, 2006, 23(8): 2004-2007.
[8]
ZHU Zhi-Ying;YU Hong-Wei. Spontaneous Emission of an Inertial Multi-Level Atom in a Spacetime with a Reflecting Plane Boundary [J]. 中国物理快报, 2006, 23(8): 2012-2015.
[9]
HAN Lian-Fang;LIU Yi-Min;ZHANG Zhan-Jun;. Multiparty Quantum Secret Sharing of Classical Message using Cavity Quantum Electrodynamic System [J]. 中国物理快报, 2006, 23(8): 1988-1991.
[10]
BAI Li-Hua;ZHANG Jing-Tao;WANG Yi;XU Zhi-Zhan. Pondermotive Shift of Photoelectron Spectra in Intense Laser Field [J]. 中国物理快报, 2006, 23(7): 1749-4752.
[11]
WU Zhen-Zhen;FANG Mao-Fa. Remote Three-Atom Information Concentration without Bell-State Measurement [J]. 中国物理快报, 2006, 23(7): 1683-1686.
[12]
XIANG Shao-Hua;SONG Ke-Hui. Generation of Two-Atom Cluster State via Cavity QED [J]. 中国物理快报, 2006, 23(6): 1466-1469.
[13]
ZHANG Ming;DONG Guo-Hua;DAI Hong-Yi;HU De-Wen. Quantum Generalized Subspace Projector Measurement and Measurement Induced Entanglement [J]. 中国物理快报, 2006, 23(5): 1072-1075.
[14]
TONG Zhao-Yang; KUANG Le-Man. Decoherence Sensing of Entangled-Coherent-State Channels via Unambiguous Quantum State Filtering [J]. 中国物理快报, 2006, 23(5): 1076-1079.
[15]
REN Xi-Feng;GUO Guo-Ping;LI Jian;LI Chuan-Feng;GUO Guang-Can. Engineering of Multi-Dimensional Entangled States of Photon Pairs Using Hyper-Entanglement [J]. 中国物理快报, 2006, 23(3): 552-555.