Fractal Dimension of Randomly Branched Polymers in a Good Solvent
BA Xin-Wu, ZHANG Shu-Wen, WANG Hai-Jun, WANG Su-Juan, HAN Ying-Hui
Department of Chemistry, Hebei University, Baoding 071002
Fractal Dimension of Randomly Branched Polymers in a Good Solvent
BA Xin-Wu;ZHANG Shu-Wen;WANG Hai-Jun;WANG Su-Juan;HAN Ying-Hui
Department of Chemistry, Hebei University, Baoding 071002
关键词 :
47.53.+n ,
61.43.Hv ,
36.20.Hb
Abstract : We propose a concept of subchain for the randomly branched polymers. As a direct application of this concept, the asymptotic expression of the average mean square radius of gyration is determined to give the fractal dimensions, in which the excluded volume effect is taken into consideration. Furthermore, We investigate a scaling relation that is associates with the Flory exponent v, the fractal dimension df and polydispersity exponent τ.
Key words :
47.53.+n
61.43.Hv
36.20.Hb
出版日期: 2002-08-01
:
47.53.+n
(Fractals in fluid dynamics)
61.43.Hv
(Fractals; macroscopic aggregates (including diffusion-limited Aggregates))
36.20.Hb
(Configuration (bonds, dimensions))
引用本文:
BA Xin-Wu;ZHANG Shu-Wen;WANG Hai-Jun;WANG Su-Juan;HAN Ying-Hui. Fractal Dimension of Randomly Branched Polymers in a Good Solvent[J]. 中国物理快报, 2002, 19(8): 1135-1140.
BA Xin-Wu, ZHANG Shu-Wen, WANG Hai-Jun, WANG Su-Juan, HAN Ying-Hui. Fractal Dimension of Randomly Branched Polymers in a Good Solvent. Chin. Phys. Lett., 2002, 19(8): 1135-1140.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2002/V19/I8/1135
[1]
TANG Qiang;TIAN Ju-Ping;YAO Kai-Lun;. Scaling Behaviour of Diffusion Limited Aggregation with Linear Seed [J]. 中国物理快报, 2006, 23(11): 3033-3036.
[2]
LIAO Tian-He;GAO Qiong. Fractional Fourier Transform of Cantor Sets [J]. 中国物理快报, 2005, 22(9): 2316-2319.
[3]
Z. Merdan;M. Bayirli. Computation of the Fractal Pattern in Manganese Dendrites [J]. 中国物理快报, 2005, 22(8): 2112-2115.
[4]
CHEN Wen. Lévy Stable Distribution and [0,2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media [J]. 中国物理快报, 2005, 22(10): 2601-2603.
[5]
LIU Zheng;XU Jian-Jun;LIN Zhi-Fang. Photonic Band Gaps in Two-Dimensional Crystals with Fractal Structure [J]. 中国物理快报, 2003, 20(4): 516-518.
[6]
ZHANG Duan-Ming;LEI Ya-Jie;PAN Gui-Jun;YU Bo-Ming. Langevin Simulation of Non-Uniform Granular Gases [J]. 中国物理快报, 2003, 20(12): 2218-2221.
[7]
LI Dan;ZHENG De-Juan;ZHOU Yan;HAN Bao-Shan. Fractal Study of Multi-branched Domains in Garnet Bubble Films [J]. 中国物理快报, 2002, 19(5): 736-738.
[8]
GUO Li-Xin;WU Zhen-Sen. Moment Method with Wavelet Expansions for Fractal Rough Surface Scattering [J]. 中国物理快报, 2002, 19(11): 1617-1620.
[9]
LIU Wen-Xian;TENG Shu-Yun;ZHANG Ning-Yu;LIU De-Li;CHENG Chuan-Fu. Computational Generation and the Simulation of the Light
Scattering of Self-Affine Fractal Random Surface [J]. 中国物理快报, 2001, 18(2): 217-219.
[10]
ZOU Ying;LUO Min-xing;WANG Zhi-jian;LI Wen-zhu. Properties of Boron-Substituted Heterofullerenes [J]. 中国物理快报, 1998, 15(2): 106-108.
[11]
YE Chao;NING Zhao-yuan;GUO Yu-hua;WANG Xiang-ying;XIN Yu;WANG Yuan-chang;SHEN Ming-rong;WANG Hao. Fractal Aggregation Behavior in Amorphous Silicon Nitride Films [J]. 中国物理快报, 1997, 14(6): 446-448.
[12]
GAO Hong-jun;XUE Zeng-quan;WU Quan-de;PANG Shi-jin. Two -Dimensional Animal-Like Fractals in Thin Films [J]. 中国物理快报, 1996, 13(2): 121-124.
[13]
WU Feng;TANG Xinlu;YANG Yuegui;WANG Xiaohong. Relationship Between the Formation of Clusters in Electrorheological Fluids and Their Fractal Dimension
[J]. 中国物理快报, 1995, 12(8): 501-504.
[14]
ZHU Lei;CHEN Kaitai;LI Yufen. A Molecular Dynamics Study of Silver Microclusters [J]. 中国物理快报, 1992, 9(10): 511-514.