The dynamic process of light-induced agglomeration of carbon nanotubes (CNTs), C60 and Escherichia coli (E.coli) in aqueous solutions is demonstrated using an optical tweezers system. Based on the results, the diameter of the agglomerated region and the agglomeration rate increase with the increasing laser power. After the saturation-stable period, CNTs diffuse completely, C60 clusters only diffuse partially, and E. coli never diffuses in the agglomeration region. Theoretical analyses show that the molecular polarization and thermal diffusion of particles play crucial roles in the diffusion process. The results indicate the possibility of using light to aggregate and sort nanoparticles.
The dynamic process of light-induced agglomeration of carbon nanotubes (CNTs), C60 and Escherichia coli (E.coli) in aqueous solutions is demonstrated using an optical tweezers system. Based on the results, the diameter of the agglomerated region and the agglomeration rate increase with the increasing laser power. After the saturation-stable period, CNTs diffuse completely, C60 clusters only diffuse partially, and E. coli never diffuses in the agglomeration region. Theoretical analyses show that the molecular polarization and thermal diffusion of particles play crucial roles in the diffusion process. The results indicate the possibility of using light to aggregate and sort nanoparticles.
LI Xue-Cong;SUN Xiu-Dong;LIU Hong-Peng;ZHANG Jian-Long. Light-Induced Agglomeration and Diffusion of Different Particles with Optical Tweezers[J]. 中国物理快报, 2010, 27(9): 98101-098101.
LI Xue-Cong, SUN Xiu-Dong, LIU Hong-Peng, ZHANG Jian-Long. Light-Induced Agglomeration and Diffusion of Different Particles with Optical Tweezers. Chin. Phys. Lett., 2010, 27(9): 98101-098101.
[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288 [2] Kou S C and Sheetz M P 1993 Science 260 232 [3] Ren Y X, Wu J G, Chen M, Li H and Li Y M 2010 Chin. Phys. Lett. 27 028703 [4] Zhou J H, Tao R Z, Hu Z B, Zhong M C, Wang Z Q, Cai J and Li Y M 2009 Chin. Phys. Lett. 26 068701 [5] Domachuk P, Magi E, Eggleton B J and Cronin-Golomb M 2006 Appl. Phys. Lett. 89 071106 [6] Zhou J H, Qu L J, Yao K, Zhong M C and Li Y M 2008 Chin. Phys. Lett. 25 329 [7] Zhang J L, Kim H I, Oh C H, Sun X D and Lee H 2006 Appl. Phys. Lett. 88 053123 [8] Santamato E, Sasso A, Piccirillo B and Vella A 2002 Opt. Exp. 10 871 [9] Svoboda K and Block S M 1994 Annu. Rev. Phys. Biomol. Struct. 23 247 [10] Galajda P and Ormos P 2002 Appl. Phys. Lett. 80 4653 [11] Iijima S 1991 Nature 354 56 [12] Ajayan P M and Zhou O Z 2001 Top. Appl. Phys. 80 391 [13] Liu J, Rinzler A G, Dai H J, Hafner R K, Bradley P J, Boul A L, Iverson T, Shelimov K, Huffman C B, Rodriguez-Macias F, Shon Y, Lee T R, Colber D T and Smalley R E 1998 Science 280 1253 [14] Benedict L X, Louie S G and Cohen M L 1995 Phys. Rev. B 52 8541 [15] Smith S P, Bhalotra S R, Brody A L and Brown B L 1999 Am. J. Phys. 67 26 [16] Peterman E J G, Gittes F and Schmidt C F 2003 Biophys. J. 84 1308 [17] Liu Y, Cheng D K, Sonek G J, Berns M W, Chapman C F and Tromberg B J 1995 Biophys. J. 68 2137 [18] Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613 [19] Rodgers T, Shoji S, Sekkat Z and Kawata S 2008 Phys. Rev. Lett. 101 127402