We study the precessional switching of a single domain, uniaxial magnetic disk with shape anisotropy by the micromagnetic simulation. The results show that magnetic switching can be driven by a smaller magnetic field pulse in an elliptic disk with its long semiaxis perpendicular to the easy axis than in a circular disk. The shape anisotropy can change the height of the energy barrier, thus we may obtain an optimal fast magnetization switching by tuning the aspect ratio of the disk under the thermal stability condition. The switching behavior of the elliptic and circular disks is studied in detail. It is found that only properly choosing the pulse amplitude and duration can realize the fast precessional switching.
We study the precessional switching of a single domain, uniaxial magnetic disk with shape anisotropy by the micromagnetic simulation. The results show that magnetic switching can be driven by a smaller magnetic field pulse in an elliptic disk with its long semiaxis perpendicular to the easy axis than in a circular disk. The shape anisotropy can change the height of the energy barrier, thus we may obtain an optimal fast magnetization switching by tuning the aspect ratio of the disk under the thermal stability condition. The switching behavior of the elliptic and circular disks is studied in detail. It is found that only properly choosing the pulse amplitude and duration can realize the fast precessional switching.
LÜDong-Li;XU Chen. Magnetization Switching in a Small Disk with Shape Anisotropy[J]. 中国物理快报, 2010, 27(9): 97503-097503.
LÜ, Dong-Li, XU Chen. Magnetization Switching in a Small Disk with Shape Anisotropy. Chin. Phys. Lett., 2010, 27(9): 97503-097503.
[1] Nalwa H S 2002 Magnetic Nanostructures (New York: American Scientific Publishers) [2] Ross C A, Haratani S, Casta ño F J, Hao Y, Hwang M, Shima M, Cheng J Y, Vögeli B, Farhoud M, Walsh M and Smith H I 2002 J. Appl. Phys. 91 6848 [3] Kikuchi R 1956 J. Appl. Phys. 27 1352 [4] Stamps R L and Hillebrands B 1999 Appl. Phys. Lett. 75 1143 [5] Xu C, Hui P M, Ma Y Q and Zhang L F 2005 Solid. State. Commun. 134 625 [6] Wei M S and Chou SY1994 J. Appl. Phys. 76 6679 [7] Otani Y, Kohda T, Novosad V, Fukamichi K, Yuasa S and Katayama T 2000 J. Appl. Phys. 87 5621 [8] Johnson J A et al 2000 Appl. Phys. Lett. 77 4410 [9] Yoo T, Shin D et al 2008 J. Appl. Phys. 103 07D119 [10] Thevenard L, Zeng H T, Petit D and Cowburn R P 2009 ArXiv: 0906.2322v1 [11] Kaka S and Russek S E 2002 Appl. Phys. Lett. 80 16 [12] Serpico C, Mayergoyz I D and Bertotti G 2003 J. Appl. Phys. 93 6909 [13] Tehrani S et al 2000 IEEE Trans. Magn. 36 2752 [14] Schumacher H W, Chappert C, Crozat P, Sousa R C, Freitas P P, Miltat J, Fassbender J and Hillebrands B 2003 Phys. Rev. Lett. 90 017201 [15] Bauer M et al 2000 Phys. Rev. B 61 5 [16] Tang K J, Xu C and Hui P M 2008 Solid State Commun. 146 265 [17] Heyderman L J et al 2006 Phys. Rev. B 73 214429 [18] OOMMF code available at http://math.nist.gov/oommf [19] Lee J Y, Lee K S and Kim S K 2007 Appl. Phys. Lett. 91 122513 [20] Cullity B D 1972 Introduction to Magnetic Materials (Reading, MA: Addison-Wesley) sec 11.6