Fabrication, Structural and Magnetic Properties for Aligned MnBi
LIU Yong-Sheng1, ZHANG Jin-Cang2, REN Zhong-Ming3), GU Min-An1, YANG Jing-Jing1, CAO Shi-Xun2, YANG Zheng-Long4
1Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090 2Department of Physics, Shanghai University, Shanghai 200444 3Department of Materials Science and Engineering, Shanghai University, Shanghai 200444 4Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Shanghai 200092
Fabrication, Structural and Magnetic Properties for Aligned MnBi
LIU Yong-Sheng1, ZHANG Jin-Cang2, REN Zhong-Ming3), GU Min-An1, YANG Jing-Jing1, CAO Shi-Xun2, YANG Zheng-Long4
1Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090 2Department of Physics, Shanghai University, Shanghai 200444 3Department of Materials Science and Engineering, Shanghai University, Shanghai 200444 4Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Shanghai 200092
MnBi compound is fabricated under a magnetic field of 1 T, and the c-axis of hexagonal MnBi crystal is aligned parallel to the magnetic field direction. The saturation magnetization Ms decreases with the increase of temperature. At temperatures below 200 K, the coercive field Hc is about 150 Oe, while the coercive field Hc increases with temperature above 200 K. From 200 K to 300 K, the remnant magnetization Mr and the Mr/Ms increase with the temperature. Below 200 K, Mr and Mr/Ms reach roughly a constant value. However, there is an abnormal increase at 100 K in Hc, Mr and Mr/Ms, which comes from a spin-reorientation in MnBi. Magnetization results show the spin-reorientation for MnBi at about 91 K due to the variations of the anisotropy constants.
MnBi compound is fabricated under a magnetic field of 1 T, and the c-axis of hexagonal MnBi crystal is aligned parallel to the magnetic field direction. The saturation magnetization Ms decreases with the increase of temperature. At temperatures below 200 K, the coercive field Hc is about 150 Oe, while the coercive field Hc increases with temperature above 200 K. From 200 K to 300 K, the remnant magnetization Mr and the Mr/Ms increase with the temperature. Below 200 K, Mr and Mr/Ms reach roughly a constant value. However, there is an abnormal increase at 100 K in Hc, Mr and Mr/Ms, which comes from a spin-reorientation in MnBi. Magnetization results show the spin-reorientation for MnBi at about 91 K due to the variations of the anisotropy constants.
(Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))
引用本文:
LIU Yong-Sheng;ZHANG Jin-Cang;REN Zhong-Ming);GU Min-An;YANG Jing-Jing;CAO Shi-Xun;YANG Zheng-Long. Fabrication, Structural and Magnetic Properties for Aligned MnBi[J]. 中国物理快报, 2010, 27(9): 97502-097502.
LIU Yong-Sheng, ZHANG Jin-Cang, REN Zhong-Ming), GU Min-An, YANG Jing-Jing, CAO Shi-Xun, YANG Zheng-Long. Fabrication, Structural and Magnetic Properties for Aligned MnBi. Chin. Phys. Lett., 2010, 27(9): 97502-097502.
[1] Yang J, Kamaraju K, Yelon W and James W 2001 Appl. Phys. Lett. 79 1846 [2] Saha S, Obermyer R, Zande B, Chandhok V, Simizu S, Sankar S and Horton J 2002 J. Appl. Phys. 91 8525 [3] Harder K, Menzel D, Widmer T and Schoenes J 1998 J. Appl. Phys. 84 3625 [4] Chen T and Stutius W 1974 IEEE Trans. Magn. 10 581 [5] Yang J, Yelon W, James W, Cai Q, Kornecki M, Roy S, Ali N and l'Heritier Ph 2002 J. Phys: Condens. Matter 14 6509 [6] Xu Y, Liu B and Pettifor D 2002 Phys. Rev. B 66 184435 [7] Ramazashvili R 2008 Phys. Rev. Lett. 101 137202 [8] Lopez-Ruiz R, Luis F, Millan A, Rillo C, Zueco D and Garcia-Palacios J 2007 Phys. Rev. B 75 012402 [9] Perry R, Mercure J, Mackenzie A and Grigera S 2009 Science 325 1360 [10] Shiotani Y, Sarrao J and Zheng G 2006 Phys. Rev. Lett. 96 057203 [11] Ahniyaz A, Sakamoto Y and Bergstrom L 2007 Proc. Natl. Acad. Sci. U.S.A. 104 17570 [12] Nie Z, Petukhova A and Kumacheva E 2010 Nature Nanotechnol. 5 15 [13] Marín P and Hernando A 2009 Appl. Phys. Lett. 94 122507 [14] Luo W, Wang D, Wang F, Liu T, Cai J, Zhang L and Liu Y 2009 Appl. Phys. Lett. 94 202507 [15] Liu Y, Zhang J, Cao S and Ren Z 2008 J. Appl. Phys. 104 043901 [16] Liu Y, Zhang J, Wang Y, Zhu Y, Yang Z, Chen J and Cao S 2009 Appl. Phys. Lett. 94 112507 [17] Yin D, Inatomi Y and Kuribayashi K 2001 J. Cryst. Growth 226 534 [18] Lu X, Nagata A, Watanabe K, Nojima T, Sugawara K and Kamada S 2001 IEEE Trans. Appl. Supercond. 11 3553 [19] Chikazumi S-o 1997 Physics of Ferromagnetism 2nd edn (Oxford: Clarendon) [20] Roberts B 1956 Phys. Rev. 104 607 [21] Albert P and Carr Jr W 1961 J. Appl. Phys. 32 S201 [22] Guo X, Chen X, Altounian Z and StrÖm-Olsen J 1992 Phys. Rev. B 46 14578 [23] Coehoorn R and De Groot R 1985 J. Phys. F: Met. Phys. 15 2135