The Hanbury-Brown-Twiss interferometer is proposed to serve as a detector of the crossed Andreev reflection and to generate entangled electron-hole pairs. It is shown that the non-local electron and hole induced by the crossed Andreev reflection are entangled. Quantum interference of the entangled electron-hole pairs gives rise to a new measurable effect of the phase difference between two superconductors in the cross correlation. The present theoretical predictions can be experimentally realized within the present-day microelectronic technology.
The Hanbury-Brown-Twiss interferometer is proposed to serve as a detector of the crossed Andreev reflection and to generate entangled electron-hole pairs. It is shown that the non-local electron and hole induced by the crossed Andreev reflection are entangled. Quantum interference of the entangled electron-hole pairs gives rise to a new measurable effect of the phase difference between two superconductors in the cross correlation. The present theoretical predictions can be experimentally realized within the present-day microelectronic technology.
ZHANG Qing-Yun;WANG Bai-Geng;SHEN Rui;XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. 中国物理快报, 2010, 27(9): 97401-097401.
ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer. Chin. Phys. Lett., 2010, 27(9): 97401-097401.
[1] Josephson B D 1962 Phys. Lett. 1 251 [2] Shapiro S 1963 Phys. Rev. Lett. 11 80 [3] Schrieffer J R 1964 Theory of Superconductivity (New York: Benjamin) [4] Tinkham M 1975 Introduction to Superconductivity (New York: McGraw-Hill) [5] McDonald D G 1990 Science 247 177 [6] Barone A and Paternò G 1982 Physics and Applications of the Josephson Effect (New York: Wiley) [7] Hamilton C A 2000 Rev. Sci. Instrum. 71 3611 [8] Makhlin Y, Schön G and Shnirman A 1999 Nature 398 305 [9] Ioffe L B, Geshkenbein V B, Feigel'man M V, Fauchère A L and Blatter G 1999 Nature 398 679 [10] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357 [11] Hanbury Brown R and Twiss R Q 1956 Nature 177 27 [12] Henny M, Oberholzer S, Strunk C, Heinzel T, Ensslin K, Holland M and Schönenberger C 1999 Science 284 296 [13] Oliver W D, Kim J S, Liu R C and Yamamoto Y 1999 Science 284 299 [14] Samuelsson P, Sukhorukov E V and Büttiker M 2004 Phys. Rev. Lett. 92 026805 [15] Neder I, Ofek N, Chung Y, Heiblum M, Mahalu D and Umansky V 2007 Nature 448 333 [16] Bell J S 1964 Physics (N.Y.) 1 195 Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 [17] Beenakker C W J 1997 Rev. Mod. Phys. 69 731 [18] Deutscher G and Feinberg D 2000 Appl. Phys. Lett. 76 487 Mélin R and Peysson S 2003 Phys. Rev. B 68 174515 Mélin R, Benjamin C and Martin T 2008 Phys. Rev. B 77 094512 [19] Russo S, Kroug M, Klapwijk T M and Morpurgo A F 2005 Phys. Rev. Lett. 95 027002 [20] Blanter Ya M and Büttiker M 2000 Phys. Rep. 336 1 [21] Beenakker C W J, Emary C, Kindermann M and van Velsen J L 2003 Phys. Rev. Lett. 91 147901 [22] Chtchelkatchev N M, Blatter G, Lesovik G B and Martin T 2002 Phys. Rev. B 66 161320(R)
[23] Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851 [24] Samuelsson P, Sukhorukov E V and Büttiker M 2003 Phys. Rev. Lett. 91 157002 [25] Hofstetter L, Csonka S, Nygård J and Schönenberger C 2009 Nature 461 960