We numerically study the negative index properties of sandwiched metamaterials, perforated with a square array of circle holes filled with different media. Transmission spectra indicate that the filling medium can effectively change the position of the localized resonant peak, while keeping the position of the other transmission peaks hardly changed. Reflection spectra and retrieved effective impedance verify that an appropriate choice of the filling medium can provide a perfect impedance match. Due to the perfect impedance match, the electromagnetic responses of the negative index band based on the internal surface plasmon polaritons change in many aspects, such as a stronger magnetic resonance, a higher figure of merit and a narrower negative refractive index band.
We numerically study the negative index properties of sandwiched metamaterials, perforated with a square array of circle holes filled with different media. Transmission spectra indicate that the filling medium can effectively change the position of the localized resonant peak, while keeping the position of the other transmission peaks hardly changed. Reflection spectra and retrieved effective impedance verify that an appropriate choice of the filling medium can provide a perfect impedance match. Due to the perfect impedance match, the electromagnetic responses of the negative index band based on the internal surface plasmon polaritons change in many aspects, such as a stronger magnetic resonance, a higher figure of merit and a narrower negative refractive index band.
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
引用本文:
WANG Xu-Dong;YE Yong-Hong;MA Ji;JIANG Mei-Ping. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials[J]. 中国物理快报, 2010, 27(9): 94101-094101.
WANG Xu-Dong, YE Yong-Hong, MA Ji, JIANG Mei-Ping. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials. Chin. Phys. Lett., 2010, 27(9): 94101-094101.
[1] Ebbesen T W, Lezec H J, Ghaemmi H F, Thio T and Wolf P A 1998 Nature 391 667 [2] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [3] Wang F M, Liu H, Li T, Dong Z G, Zhu S N and Zhang X 2007 Phys. Rev. E 75 016604 [4] Ye Y H and Zhang J Y 2005 Opt. Lett. 30 1521 [5] Ortuno R, Garcia-Meca C, Rodriguez-Fortuno F J, Marti J and Martinez A 2009 Phys. Rev. B 79 075425 [6] Feng Hui and Wang Li 2010 Chin. Phys. Lett. 27 064201 [7] Zhu Bo, Wang Z B, Yu Z Z, Zhang Qi, Zhao J M, Feng Y J and Jiang T 2009 Chin. Phys. Lett. 26 114102 [8] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 Phys. Rev. Lett. 95 137404 [9] Yan C C, Cui Y P, Wang Q and Zhuo S C 2008 Chin. Phys. Lett. 25 482 [10] Valentine J, Zhang S, Zentgraf T, Avila E U, Genov D A, Bartal G and Zhang X 2008 Nature 455 376 [11] Mary A, Rodrigo S G, Garcia-Vidal F J and Martin-Moreno L 2008 Phys. Rev. Lett. 101 103902 [12] Helgert C, Menzel C, Rockstuhl C, Pshenay-Severin E, Kley E B, Chipouline A, Tunnermann A, Lederer F and Pertsch T 2009 Opt. Lett. 34 704 [13] Wang X D, Ye Y H, Zheng C, Qin Y and Cui T J 2009 Opt. Lett. 34 3568 [14] Ding P, Liang E J, Hu W Q, Zhou Q, Zhang L, Yuan Y X and Xue Q Z 2009 Opt. Express 17 2198 [15] Zhang X and Liu Z 2008 Nature Mater. 7 435 [16] Hua Y L, Li Z Y 2009 J. Appl. Phys. 105 013104 [17] Ku Z, Zhang J and Brueck S R J 2009 Opt. Express 17 6782 [18] Dong Z G, Xu M X, Liu H, Li T and Zhu S N 2009 J. Appl. Phys. 105 034907 [19] Beruete M, Campillo I, Navarro-Cia M, Falcone F and Ayza M S 2007 IEEE Trans. Antennas Propagat. 55 1514 [20] Okamoto T 2001 Near-Field Optics and Surface Plasmon Polariton ed Kawata S, Ohtsu M and Irie M (New York: Springer) chap 6 p 97 [21] Wang X D, Ye Y Y and Zheng C 2010 Chin. Phys. Lett. 27 034103 [22] Smith D R, Schultz S, Markos P and Soukoulis C M 2002 Phys. Rev. B 65 195104 [23] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617